
Regular Expressions

- DREW MCLELLAN -
- CONFOO 2015 -

- GETTING TO GRIPS WITH -

For the fearful.

Hello!
flickr.com/photos/85520404@N03/9535499657

Created by b mijnlieff from the Noun Project

Created by Christy Presler from the Noun Project

Created by Yi Chen from the Noun Project

Humans are great at
matching patterns.

RegExp are great at
matching patterns.

RegExp

Humans

Donec in euismod mi. Ut a ullamcorper eros, id ultricies odio. In ullamcorper lobortis finibus. Nunc molestie,
ex id ultrices lobortis, ante elit Finding mauris consequat lacus, at scelerisque leo nisl vitae leo. cursus
lacus eu erat euismod tincidunt. Etiam ultrices elementum nulla, eu ornare elit eleifend a. Mauris lacinia
velit non maximus ultrices. Praesent in condimentum metus. Curabitur hendrerit eget text id egestas. Nam
et sodales dui. Suspendisse potenti. Mauris sed suscipit dui. Suspendisse ultricies felis non lacus maximus
rutrum. Duis vel ante et neque ornare sagittis eu a nisi. Curabitur ultrices aliquet magna ut venenatis. Duis
nec rhoncus that, sed pulvinar dui. Nunc pellentesque tortor sem, convallis eleifend nibh pharetra eu.
Nulla congue, nisi vitae consectetur sollicitudin, felis nisl malesuada tortor, ut semper sem tellus ut dui.
Donec eget augue quis justo vestibulum sodales sit amet eget tortor. Donec viverra risus turpis, sit amet
congue dolor vel matches. Pellentesque sollicitudin purus a ligula tristique, et posuere justo faucibus.
Pellentesque vehicula id nisl sit amet mollis. Integer tempor eros id varius aliquam. Phasellus vel est
ullamcorper, dignissim nulla et, iaculis ex. Maecenas a dictum orci, eu sagittis felis. Vestibulum scelerisque
diam elit, vitae placerat ipsum congue nec. Nulla blandit magna vel velit feugiat, eget maximus tortor
feugiat. In vel metus ex. Ut molestie enim vel dolor elementum, at patterns turpis volutpat. Sed pulvinar
dignissim eros et interdum. Quisque scelerisque diam et facilisis consequat. Etiam gravida sodales ornare.
Donec tristique sem vitae ipsum gravida, in finibus sem vulputate. Sed in ex at dolor euismod commodo
sed nec augue. Maecenas sed dictum turpis, nec bibendum neque. Pellentesque dapibus mi vitae elit
porttitor elementum. Vestibulum porttitor porta nunc, et laoreet eros finibus ac. Suspendisse potenti. Nunc
a gravida nisi. Morbi et massa magna. Cras ligula erat, congue sit amet dignissim a, porttitor vel felis.

Regular Expressions

Server rewrite rules.

Form validation.

Text editor search & replace.

Application code.

Flavours

POSIX basic & extended.

Perl and Perl-compatible (PCRE).

Most common implementations are Perl-like
(PHP, JavaScript and HTML5, mod_rewrite, nginx)

In this exciting episode

Basic syntax.

Matching.

Repeating.

Grouping.

Replacing.

But first…

A regular expression tester is a great way to try
things out.

There’s an excellent online tester at:
regex101.com

RegExp Basics

Basics /regex goes here/

/regex goes here/modifiers

/[A-Z]\w[A-Z]/i

Delimiters are usually slashes
by default.

Some engines allow you to use
other delimiters.

Modifiers include things like
case sensitivity.

Basics /this\/that/

Delimiters and other special
characters need to be escaped
with backslashes.

Basics /\w\s\d/

+ . * ? ^ | / () {} []

/ferret/

Anything proceeded by a
backslash has a special
meaning.

There are also a number of
meta-characters with special
meaning.

Most other things are literal.

Matching

Words \w (lowercase W)

/\w/ 

Hello, world, 1234.

Matches an alphanumeric
character, including
underscore.

Global modifier

The ‘g’ global modifier returns all matches.

Doesn’t stop at the first match.

Words \w (lowercase W)

/\w/g 

Hello, world, 1234.

Matches an alphanumeric
character, including
underscore.

Digits \d

/\d/ 

Hello, world, 1234.

/\d/g 

Hello, world, 1234.

Matches single digits 0-9.

Spaces \s

/\s/ 

Hello, world, 1234.

/\s/g 

Hello, world, 1234.

Matches single whitespace
character.

Includes spaces, tabs, new
lines.

Character classes

These are all shorthand character classes.

Character classes match one character, but
offer a set of acceptable possibilities for the
match.

The tokens we’ve looked at a shorthand for
more complex character classes.

Words \w

[A-Za-z0-9_]Character classes match one
character only.

They can use ranges like A-Z.

They are denoted by [square
brackets].

Digits \d

[0-9]Character classes match one
character only.

They can use ranges like A-Z.

They are denoted by [square
brackets].

Spaces \s

[\r\n\t\f]Character classes match one
character only.

They can use ranges like A-Z.

They are denoted by [square
brackets].

!!!

\r Carriage return

\n New line

\t Tab

\f Form feed

Custom classes [ol3]

/[ol3]/g 

Hello, world, 1234.

[a-z0-9-]

/[a-z0-9-]/g 

/2009/nice-title

Negative classes [^ol3]

/[^ol3]/g 

Hello, world, 1234.
Use a caret to indicate the
class should match none of the
given characters.

[^a-z0-9-]

/[^a-z0-9-]/g 

/2009/nice-title

Dot

A dot (period) matches any character other than
a line break.

It’s often over-used. Try to use something more
specific if possible.

Dot /./g 

Hello, world, 1234.Matches any character other
than a line break.

!false

Developer joke time.

So where does this
get us?

Matching Hello world (1980-02-21).

/\d\d\d\d-\d\d-\d\d/ 
 
Hello world (1980-02-21).

So that’s something, right?

Repetition

Repetition

Matching single characters gets old fast.

There are four main operators or ‘quantifiers’ for
specifying repetition.

Repetition
? Match zero or once.

+ Match once or more.

* Match zero or more.

{x} Match x times.

{x,y} Match between x and y times.

Repetition /\d\d\d\d-\d\d-\d\d/

/\d{4}-\d{2}-\d{2}/

/[a-z0-9-]+/g 
 
/2009/nice-title

Greediness

Repetition quantifiers are ‘greedy’ by default.
They’ll try to match as many times as possible,
within their scope.

Sometimes that’s not quite what we want, and
we can change this behaviour to make them
‘lazy’.

Greediness /<.+>/ 
 
This is some HTML.

EXPECTED: 
This is some HTML.

ACTUAL: 
This is some HTML.

Repetition quantifiers try to
match as many times as
they’re allowed to.

Greediness /<.+?>/ 
 
This is some HTML.Quantifiers can be made ‘lazy’

with a question mark.

Anchors

Anchors

Anchors don’t match characters, but the
position within the string.

There are three main anchors in common use.

Anchors ^ The beginning of the string.

$ The end of the string.

\b A word boundary.

Anchors /^Hello/g 
 
Hello, Hello

/Hello$/g 
 
Hello, Hello

Anchors find matches based
on position.

Anchors /cat/g 
 
cat concatenation

/\bcat\b/g 
 
cat concatenation

Word boundaries are useful for
avoiding accidental sub-
matches.

[‘hip’, ‘hip’]

Developer joke time.

Grouping

Grouping

Parts of a pattern can be grouped together with
(parenthesis).

This enables repetition to be applied on the
group, and enables us to control how the result
is ‘captured’.

Grouping abc123-def456-ghi789

/[a-z]{3}[0-9]{3}-?/

/([a-z]{3}[0-9]{3}-?)+/

[ 
 ‘abc123-’, 
 ‘def456-’, 
 ‘ghi789’ 
]

Round brackets enable us to
create groups that can then be
repeated.

Grouping /([a-z]{3}[0-9]{3}-?)+/

/(?:[a-z]{3}[0-9]{3}-?)+/Groups are captured by
default.

If you don’t need the group to
be captured, make it non-
capturing.

Grouping /\w+@\w+\.\w+/

drew@allinthehead.com

/(\w+)@(\w+\.\w+)/

[ 
 ‘drew’, 
 ‘allinthehead.com’ 
]

Capturing groups is very
useful!

!!!

Grouping /(?<user>\w+)@(?<domain>\w+\.\w+)/

[ 
 user: ‘drew’, 
 domain: ‘allinthehead.com’ 
]

Some engines offer named
groups.

Replacing

Replacing

If you’ve used capturing groups in your pattern,
you can re-insert any of those matched values
back into your replacement.

This is done with ‘back references’.

Back references use the index number of the
captured group.

Replacing with back
references

<?php

$str = 'drew@allinthehead.com';

$pattern = '/(\w+)@(\w+\.\w+)/';

$replacement = '$1 is now fred@$2';

$result = preg_replace($pattern,
$replacement, $str);

echo $result;

> drew is now fred@allinthehead.com

PHP uses the preg (Perl
Regular Expression) functions
to perform matches and
replacements.

Replacing with back
references

var str = 'drew@allinthehead.com';

var pattern = /(\w+)@(\w+\.\w+)/;

var replacement = '$1 is now fred@$2’;

var result = str.replace(pattern,
replacement);

console.log(result);

> drew is now fred@allinthehead.com

JavaScript uses the replace()
method of a string object.

Putting it to use

HTML5 input
validation

<input name="sku" type="text"
pattern="[A-Z]{3}[0-9]{8-10}">

HTML5 adds the pattern
attribute on form fields.

They’re parsed using the
browser’s JavaScript engine.

Apache  
mod rewrite

RewriteEngine On

RewriteRule  
^news/([1-2]{1}[0-9]{3})/([a-z0-9-]+)/?  
/news.php?year=$1&slug=$2URL rewriting in Apache uses

PCRE.

Your application
code

<?php

$str = 'Look at this https://
www.youtube.com/watch?v=loab4A_SqoQ and
this https://www.youtube.com/watch?
v=I-19GRsBW-Y';

$pattern = '/(\w+:\/\/[^\s"]+)/';

$replacement = '$1';

echo preg_replace($pattern,
$replacement, $str);

> Look at this <a href="https://
www.youtube.com/watch?
v=loab4A_SqoQ">https://www.youtube.com/
watch?v=loab4A_SqoQ and this <a
href="https://www.youtube.com/watch?
v=I-19GRsBW-Y">https://www.youtube.com/
watch?v=I-19GRsBW-Y

Don’t copy this example - it’s
simplified and insecure.

Further reading

Further reading

Teach Yourself Regular Expressions in
10 minutes, by Ben Forta.

(Not actually in 10 minutes.)

Mastering Regular Expressions, by
Jeffrey E. F. Friedl.

Further learning

regex101.com

Thanks!
@drewm

speakerdeck.com/drewm/learn-to-love-regular-expressions

