1\

- GETTING TO GRIPS WITH -

Regular Expressions

- CONFOO 2015 -

For the fearful.

- — - —

\\\

< —

\ " - |
: i 5 | /))
A -
3]]

g s

|

.

lllll ll!!’! EfE = ‘"‘f’::i . -
,_A..._-..v . ; ; 4
- p— ‘ ‘ - '.
- > : . '

i)

-#,‘

0404 N@ /9535499657

%o, flickr.com/photos;

Humans are great at
matching patterns.

RegEXp are great at
matching patterns.

Donec in euismod mi. Ut a ullamcorper eros, id ultricies odio. In ullamcorper lobortis finibus. Nur
s, ante elit Finding mauris consequat lac
ismod tincidunt.

S ultrices. Praese

ex Id ultrices loborti
lacus e
velit No
et sodales dui. Sus
rutrum. Duis vel ar
nec rhoncus that, sec
Nulla cong
Jonec eget augl

_/

h

e

rat eu

M

congue do

dig
Do
sed r

28

r

PellentesqgL
Ullamcorpe
diam elit, vitae p
feugiat. In vel metus ex. Ut mo
NISS]
nec t

o
St

aximu

or ve
€ VE

h

h

Je, Nnisi vitae consectetu

r, dig

"0S el

que sem vitae ipsum g
ec augue. Maecenas sed dictu
porttitor elementu
a gravida nisi. Mor

“tiam ultrices e
Nt in condiment
potenti. Mauris sed suscipit

nendisse
te et neg
pulvinar du

entesc
- Telis

. Nunc pel
- sollicitudi
oulum soda
ntesque sollicitudin

U
o

h

e quis justo vesti
matches. Pelle
icula id nisl sit arr
issim nulla et, iacu
acerat ipsum

e nec. Nulla bla
Nim vel dolor ele
e scelerisqu
ravida, in finibus sem
M turpis, nec bibe
M. Vestibulum porttitor porta nunc, et

congu
estie e
interdum. QuisqgL

ementL
Um met

Ue ornare sagittis eu a nisi. Curabitu
e tortor sem, convall
SEEIES
es sit amet eget
ourus a lig
et mollis. Integer tempor eros id varius aliguam. Phasellus ve
'S ex. Maecenas a dictum orci, eu sagi
Nadit
mentu
e diam et facilisis conseq

C molestie,
e0. CUrsus
it eleifend a. Mauris lacinia
t eget text id egestas. Nam
tricies felis non lacus maximus
iquet magna ut venenatis. Duis
s eleifend nibh pharetra eu.
Ut semper sem tellus ut dui.
or. Donec viverra risus turpis, sit amet
la tristigue, et posuere justo faucibus.
est
ttis felis. Vestibulum scelerisque
agna vel velit feugiat, eget maximus torto
M, at patterns turpis volutpat. Sed pulvina
Uat. Etiam gravida sodales ornare.
vulputate. Sed in ex at dolor euismod commodo
ndum neque. Pellentesque dapibus mi vitae elit

Us, at scelerisque leo nisl vitae
m nulla, eu ornare e
Us. Curabitur hendrer;
dui. Suspendisse u
~ ultrices a

\

Jada tortor,
0

-

A

(-

r

aoreet eros finibus ac. Suspendisse potenti. Nunc

DI et massa magna. Cras ligula erat, congue sit amet dignissim a, porttitor vel felis.

Regular Expressions

Server rewrite rules.
Form validation.
Text editor search & replace.

Application code.

Flavours

POSIX basic & extended.
Perl and Perl-compatible (PCRE).

Most common implementations are Perl-like
(PHP, JavaScript and HTML5, mod_rewrite, nginx)

In this exciting episode

Basic syntax.
Matching.
Repeating.
Grouping.

Replacing.

But first...

A regular expression tester is a great way to try
things out.

There's an excellent online tester at:
regex101.com

LA A Tt Online regex tester and dc % \§ \

€ - C' [nttps://regex101.com

regey, > @& = v S K ¥

FLAVOR |
% REGULAR EXPRESSION " EXPLANATION ©

PCRE e
1S

automatically generated as you type.
PY TEST STRING

MATCH INFORMATION

Detailed match information will be
displayed here automatically.

VERSION ...

o

QUICK REFERENCE o

FuLL.(@) J| MoST UsED TOK.

I % mos... A single cha... [abc]

S allt.. A characte... [*abc]
CATEGO... A characteri... [a-Z]

A character... [Ma-Z]

SUBSTITUTION A charact... [a-zA-Z]

00 / T Online regex tester and dc X \

& - C £ hitps/regex101.com

regey, ° & =

FLAVOR - EGULAR EXPRESSION
PCRE

1 maTCH

/| Nd+|

gmixXsuUA) @

JS

Py TEST STRING

Hello, world, 1234.

b LS
4

O

VERSION ...
=)

SUBSTITUTION

EXPLANATION
“«/Nd+/

4 \d+ match a digit [0-9]
Quantifier: + Between one
and unlimited times, as many

times as possible, giving back as
needed [greedy]

MATCH INFORMATION

No match groups were extracted.

This means that your pattern
matches but there were no
(capturing Igroupsl) in it that
matched anything in the subject

string.

QUICK REFERENCE

FULL..(Q)
| % mos...

= allt..
CATEGO...

MOST USED TOK...

A single cha... [abc]
A characte... ["abc]
A characteri... [a-Z]
A character... [Ma-Z]

A charact... [a-zA-Z]

RegEXxp Basics

Basics /regex goes here/

Delimiters are usually slashes /regex goes here/moditiers
by default.

/LA-ZI\w[A-Z]/1

Some engines allow you to use
other delimiters.

Modifiers include things like
case sensitivity.

SE T /this\/that/

Delimiters and other special
characters need to be escaped
with backslashes.

Basics

Anything proceeded by a
backslash has a special
meaning.

There are also a number of
meta-characters with special

meaning.

Most other things are literal.

/\w\s\d/

+.x 22 |/ (O {3} L]
/ferret/

Matching

Words \w (lowercase W)

Matches an alphanumeric /\W/
character, including

underscore. Hello, world, 1234.

Global modifier

The ‘g’ global modifier returns all matches.

Doesn't stop at the first match.

Words \w (lowercase W)

Matches an alphanumeric /\W/g
character, including
underscore.

-’ -’ -'

\d

Matches single digits 0-9. /\d/

Hello, world, 1234.
/\d/g

Hello, world, 1234.

Spaces \'s

Matches single whitespace /\s/
character.

Hello, world, 1234.

Includes spaces, tabs, new

lines. /\s/g

Hello, world, 1234.

Character classes

These are all shorthand character classes.

Character classes match one character, but
offer a set of acceptable possibilities for the
match.

The tokens we've looked at a shorthand for
more complex character classes.

Words \W

Character classes match one [A_Za‘z®‘9_:|
character only.

They can use ranges like A-Z.

They are denoted by [square
brackets].

Its

Dig

Character classes match one
character only.

They can use ranges like A-Z.

They are denoted by [square
brackets].

Spaces

Character classes match one
character only.

They can use ranges like A-Z. \r Carriage return

They are denoted by [square
brackets]. \n New line

\t Tab

\f Form feed

Custom classes [013]
/[0l3]/g

Hello, world, 1234.

[a-z0-9-]
/[a-z0-9-1/¢g

/2009/nice-title

Negative classes JERIER
/[*0l13]/g

Hello, world, 1234.

Use a caret to indicate the
class should match none of the

given characters.

| "a-z0-9- |
/["a-z0-9-1/¢g

/2009/nice-title

Dot

A dot (period) matches any character other than
a line break.

It's often over-used. Try to use something more
specific if possible.

Dot

Matches any character other
than a line break.

Developer joke time.

lfalse

So where does this
get us?

Matching Hello world (1980-02-21).
So that's something, right? /\d\d\d\d-\d\d-\d\d/

Hello world (1980-02-21).

Repetition

Repetition

Matching single characters gets old fast.

There are four main operators or ‘quantifiers’ for
specifying repetition.

Repetition

? Match zero or once.
+ Match once or more.
* Match zero or more.

{x} Match x times.

{X,y} Match between x and y times.

Repetition /\d\d\d\d-\d\d-\d\d/
/\d{43-\d{2}-\d{2}/

/La-z0-9-1+/¢g

/2009/nice-title

Greediness

Repetition quantifiers are ‘greedy’ by default.
They'll try to match as many times as possible,
within their scope.

Sometimes that’s not quite what we want, and
we can change this behaviour to make them
lazy’.

Greediness /< +>)/

Repetition quantifiers try to This 1s some HTML.
match as many times as

they're allowed to. EXPECTED:

This is some HTML.

ACTUAL:

This is some HTML.

Greediness /< +7>)/

SLERUIE S EE B This is some HTML.
with a question mark.

Anchors

Anchors

Anchors don't match characters, but the
position within the string.

There are three main anchors in common use.

AHChors A The beginning of the string.

$ The end of the string.

\b A word boundary.

Anchors /*Hello/g

Hel16, Hello

/Hello$/g

Hello, Hello

Anchors find matches based
on position.

Anchors /cat/g
Word boundaries are useful for

cat concatenation
avoiding accidental sub-

matches. /\bcat\b/g

cat concatenation

[‘hip’, ‘hip’]

Grouping

Grouping

Parts of a pattern can be grouped together with
(parenthesis).

This enables repetition to be applied on the
group, and enables us to control how the result
IS ‘captured’.

Grouping abc123-def456-ghi789

Round brackets enable us to / [8‘21{3}[®‘9]{3}‘?/

create groups that can then be

repeated. /(La-z1{3}L0-9]{3}-7)+/
I
‘abcl23-",
‘def456-",
‘eh1789’

Grouping /([a-z]{3}[0-91{3}-7)+/

Groups are captured by /(?3 [3_21{3}[®_9]{3}_?>+/
default.

If you don't need the group to
be captured, make it non-
capturing.

e ——

== —_—— ————— 7

(/\w+@\w+\. \w+/ J

Grouping

e

Capturing groups is very drew@allinthehead. com
useful!

/(\wt)@(\w+\ . \wt)/
I

‘drew’
‘allinthehead.com’

Grouping / (?<user>\w+)@(?2<domain>\w+\.\w+)/

Some engines offer named I
groups. user: ‘drew’,

domain: ‘allinthehead.com’

Replacing

Replacing

If you've used capturing groups in your pattern,
you can re-insert any of those matched values
back into your replacement.

This is done with ‘back references’.

Back references use the index number of the
captured group.

Replacing with back
references

PHP uses the (Perl
Regular Expression) functions
to perform matches and
replacements.

<?php

$str = 'drew@allinthehead.com’;
$pattern = "/(\wt)@(\w+\.\w+)/';
$replacement = '$1 1s now fred@$2’;

$result = preg_replace($pattern,
$replacement, $str);

echo $result;

> drew 1s now fred@allinthehead.com

Replacing with back var str = 'drew@allinthehead.com’;
references

JavaScript uses the
method of a string object. var replacement = '$1 is now fred@$2’;

var pattern = /(\w+)@(\w+\.\w+)/;

var result = str.replace(pattern,
replacement);

console.log(result);

> drew 1s now fred@allinthehead.com

Putting it to use

HTMLS input
validation

HTML5 adds the pattern
attribute on form fields.

They're parsed using the

browser’s JavaScript engine.

<input name="sku" type="text"
pattern="[A-Z]1{3}[0-9]{8-10}">

ApaChe RewriteEngine On
mod rewrite

RewriteRule
*news/ ([1-2]1{1}[0-91{3})/([a-z0-9-]1+) /7

URL rewriting in Apache uses /news . php?year=$1&slug=$2

PCRE.

Your application <?php

code $str = 'Look at this https://

Don’t copy this example - it's www . youtube.com/watch?v=1oab4A_SqoQ and
simplified and insecure. this https://www.youtube.com/watch?
v=I-19GRsBW-Y';

$pattern = '/ (\w+:\/\/[*\s"]1+)/";
$replacement = '%$1";

echo preg_replace($pattern,
$replacement, $str);

> Look at this <a href="https://

www . youtube.com/watch?
v=loab4A_SqoQ">https://www. youtube.com/
watch?v=1o0ab4A_SqoQ and this <a
href="https://www.youtube.com/watch?
v=I-19GRsBW-Y">https://www.youtube.com/
watch?v=I-19GRsBW-Y

Further reading

Further reading

sAms h
ac
ourself

Regular
Expressions

Teach Yourself Regular Expressions in
10 minutes, by Ben Forta.

(Not actually in 10 minutes.)

T
Mastering A

Regulér =

Expressions

O’REILLY"

Jeffrey EF. Fried!

Mastering Regular Expressions, by
Jeffrey E. F. Friedl.

Further learning

00 / TE Online regex tester and dr X \"'i—\)\ @
& © C @ nhitps//regex101.com &l] =

FLAVOR
| REGULAR EXPRESSION EXPLANATION)
PCRE
/ | Nd+¥| /| gmixXsuUAJ @ 4 /N\d% /
5 4 \d+ match a digit [0-9]
TEST STRING Quantifier: + Between one
PY and unlimited times, as many
Hello, world, 1234. times as possible, giving back as
TOOLS needed [greedy]
]
<P
¥ MATCH INFORMATION =
v No match groups were extracted.
L+ This means that your pattern
matches but there were no
VERSION ... (capturing lgroupsl) in it that
- matched anything in the subject
string.
QUICK REFERENCE =l
FULL.(Q) | MosT UseD TOK.. I
| W mos... Asingle cha... [abc]
S allt.. A characte... [Mabc]
CATEGO... A characteri... [a-z]
® gen.. A character... ["a-z]
SUBSTITUTION © & anc. A charact... [a-zA-Z]

regex101.com

speakerdeck.com/drewm/learn-to-love-regular-expressions

