i\ e

4

J1AY U

HIDDE DE VRIES, TALK.CSS, 2-10-2020

Hidde de Vries

r

reelance front-end developer, accessibility

necialistfrom Rotterdam, Netherlands.

hiddedevries.nl What | do About me Contact

Blog

Posts about HTML, CSS, JavaScript, accessibility and

browsers from the perspective of a curious front-end

developer.
BEST OF

Sorted by a unique and patented
algorithm, these posts may interest you:

More accessible defaults, Three ways to build Crouwel's How accessibility trees inform

please! Hiroshima poster in CSS assistive tech

Heading structures are tables of Making password managers

G g ‘ \ ‘ ® | | | contents play ball with your login form
V I e [] O RSS (ful) When there is no content between headings on o5 September 2020
RSS {summaries) Why having no content between headings can be problematic.

Equality, a reading list (2) on 16 july 2020

Fhnnbe abant inaar T, and

https://hiddedevries.nl/en/blog
https://hiddedevries.nl/en/blog

1[I
FIXED CANVAS

MoMA

Photo JMB

Photo JMB: MoMA

From: Wikipedia

1189 mm

74 mm

841 mm
52mm 105 mm

’<—>< >l 210 mm >l 420 mm

A8
A6

A7
i A4
A5
|
A3
}

A a

1414 mm

88 mm

1000 mm
62mm 125 mm
’<—>< > 250 mm > 500 mm
B8

|

B7

176 mm

B4
B5

353 mm —————>

B2
B3

-

707 mm

posters

ALLE A-merk per

VErZcs

- S00nhijke
SINE En vitamines»

From: Emerce

Digital
posters

"More relevant,
more local outreach
to our customers”

From: Emerce

ALLE A-merk per
VErZorging en vitamines»

S00nhijke

Digital
posters

COULD! USE! CSS! » {

posters

ALLE A-merk per

VErZcs

- S00nhijke
SINE En vitamines»

From: Emerce

From: CERN (home.cern)

The web is everywhere,
there are infinite canvases.

The web is everywhere,
there are infinite canvases.

And lots of lanquages.

The web is everywhere,
there are infinite canvases.

And lots of languages. And
a lot of writing systems.

The web is everywhere,
there are infinite canvases.

And lots of languages. And
a lot of writing systems.

CSS is here to help!

"When we define auto in CSS, we want it give
reasonable results, avoid dataloss/overflow and
be a good default to build on”

- Fantasai, in her talk "Defining auto”

Fantasai, “Defining auto” - http://fantasai.inkedblade.net/style/talks/defining-auto/#sizing-primitives

{{{1]]]
[ERMINLSGY

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
B’OCk vs contents. Unlike Flexible Box Layout, which is single-axis—oriented, Grid Layout is optimized for 2-dimensional layouts:

. those in which alignment of content is desired in both dimensions.
inline

I J| | I
I | | | |)

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping ot items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size—based line-wrapping system to control its secondary axis, and relies on the underlying markup

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
B’OCk vs contents. Unlike Flexible Box Layout, which is single-axis—oriented, Grid Layout is optimized for 2-dimensional layouts:

. those in which alignment of content is desired in both dimensions.
inline

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping ot items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size—based line-wrapping system to control its secondary axis, and relies on the underlying markup

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
contents. Unlike Flexible Box Layout, which is single-axis—oriented, Grid Layout is optimized for 2-dimensional layouts:

those in which alignment of content is desired in both dimensions.

Representative Flex Layout Example

[I

Representative Grid Layout Example

inline

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping ot items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size—based line-wrapping system to control its secondary axis, and relies on the underlying markup

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

[Grid]Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
B’OCk vs contents. Unlike Flexible Box Layout, which is single-axis—oriented, Grid Layout is optimized for 2-dimensional layouts:

. those in which alignment of content is desired in both dimensions.
inline

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping ot items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size—based line-wrapping system to control its secondary axis, and relies on the underlying markup

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Layoutji ajlayout§modelfrof CSS thesizingfandlpositionindjof boxefland their
B’OCk vs contents. Unlike Flexible Box Layout, which is single-axis—oriented, Grid Layout is optimized for 2-dimensional layouts:

. those in which alignment of content is desired in both dimensions.
inline

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping ot items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size—based line-wrapping system to control its secondary axis, and relies on the underlying markup

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Layoutji ajlayout§modelfrof CSS thesizingfandlpositionindjof boxefland their
B’OCk vs contents. Unlike Flexible Box Layout, which is single-axis—oriented, Grid Layout is optimized for 2-dimensional layouts:

. those in which alignment of content is desired in both dimensions.
inline
| | | | | |

(Ir |eft t0 ”g ht’ Representative Flex Layout Example
top to bottom layout) | I I |

| | |
Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping ot items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size—based line-wrapping system to control its secondary axis, and relies on the underlying markup

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

block
flow direction

line
orientation o ’
5 A S5 — =N
.- Text S)
23 X
v inline
pase direction
Latin-based Mongolian-based
e flow lzili?ggtion line
orientation 4 . orientation
- & - A
<. Text or gPis S Text
~-. Flow X $ 8 X
= rohe
v D ;1:;:»:II-:l_llll':_tuf_.l'f - % F I OW
i 4
Han-based Arabic-based

CSS Writing Modes Level 4 - https://www.w3.0rg/TR/css-writing-modes-4/#writing-mode

block
flow direction

line
orientation o ’
5 A S5 — =N
.- Text S)
23 X
v inline
pase direction
Latin-based Mongolian-based
e flow lzili?ggtion line
orientation 4 . orientation
- & - A
<. Text or gPis S Text
~-. Flow X $ 8 X
= rohe
v D ;1:;:»:II-:l_llll':_tuf_.l'f - % F I OW
i 4
Han-based Arabic-based

CSS Writing Modes Level 4 - https://www.w3.0rg/TR/css-writing-modes-4/#writing-mode

‘ Vertical typesetting with writinc X 4+

C ® © @& nttps//chenhuiing.com/blc B =+ & ¥¢ & IN @D © O 3&

- Chen Hui Jing
Hbout Work Talks Blog

! ' The chronicles of a self-taught designer and developer.
".'._-i'l

type on the
b still

We Vexrtical typesetting with wrxiting-

tr i Cky mode revisited

About year ago, I wrote about the findings from an exercise in

attempting to typeset Chinese vertically on the web. What came out of
that was a bare-bones demo that allowed you to switch between writing

modes using the checkbox hack.

I met Yoav Weiss a little while back and we chatted a little about the

it would be nice if there could be some media query for writing-mode
with the picture element so I didn’t have to do some mildly hackish
transforms on my images when I switched modes. And he suggested I
write it up as a use-case for responsive images.

But when I reopened this demo that I hadn’t touched in a year, my face
went from & to @ to to @ within the first 5 minutes (what can I

say? I have an expressive face “%¥). So for catharsis, I’m going to write
down my play-by-play of trying to figure out who (i.e. browsezrs) broke

O what and hopefully how to mitigate it, for now.

Post is lona, use links to skip.

n Vertical typesetting with writinc X 4+

C ® © @& httpsy//chenhuiingcom/blc] <« @ ¥ & IN D O O =t

- Chen Hui Jing
Hbout Work Talks Blog

! ' The chronicles of a self-taught designer and developer.
l'."_-n"l

Vertical "
type on the
b still

We Vexrtical typesetting with wrxiting-

tr i Cky mode revisited

About year ago, I wrote about the findings from an exercise in

attempting to typeset Chinese vertically on the web. What came out of
that was a bare-bones demo that allowed you to switch between writing

modes using the checkbox hack.

“Unfortunately, 10

. T met Yoav Weiss a little while back and we chatted a little about the
minutes into the

attempt, broke it would be nice if there could be some media query for writing-mode
b S| with the picture element so I didn’t have to do some mildly hackish
my brain. | |
transforms on my images when I switched modes. And he suggested I
write it up as a use-case for responsive images.

But when I reopened this demo that I hadn’t touched in a year, my face
went from & to @ to to @ within the first 5 minutes (whatcan I
say? I have an expressive face “%¥). So for catharsis, I’m going to write

down my play-by-play of trying to figure out who (i.e. browsezrs) broke
o what and hopefully how to mitigate it, for now.

Post is lona, use links to skip.

“I've found understanding Writing
Modes incredibly helptul when
understanding Flexbox and CSS Grid"

Jen Simmons, "CSS Writing Modes” - https://24ways.org/2016/css-writing-modes/

block
flow direction

line
orientation o ’
5 A S5 — =N
.- Text S)
23 X
v inline
pase direction
Latin-based Mongolian-based
e flow lzili?ggtion line
orientation 4 . orientation
- & - A
<. Text or gPis S Text
~-. Flow X $ 8 X
= rohe
v D ;1:;:»:II-:l_llll':_tuf_.l'f - % F I OW
i 4
Han-based Arabic-based

CSS Writing Modes Level 4 - https://www.w3.0rg/TR/css-writing-modes-4/#writing-mode

.grid 3
writing—-mode: horizontal-tb;
writing-mode: vertical-rl;
writing-mode: vertical-1r;
writing—-mode: sideways-rl;
writing—-mode: sideways-1r;

5

CSS Writing Modes Level 4 - https://www.w3.0rg/TR/css-writing-modes-4/#writing-mode

{{{1]]]

THE GRID CONTAINER

Creating .grid g
a Gﬂd display: grid;

5

Y New Tab X —+

(€ @» Q_ Search with DuckDuckGo or enter address

v IN @D © © R = 8

Inline
size

e Y New Tab X <+

& c @' O\ Search with DuckDuckGo or enter address

section

<!—— width: 100% of window —>
<section></section>

@ Y New Tab X <+

& (€ @» Q_ Search with DuckDuckGo or enter address

div

<!— width: 100% of window —>
<section>

<!—— width: also 100% of window —>
<dliv style="display: grid;">
</div>

¢ New Tab X -+

C Search with DuckDuckGo or enter address v INED © O 2 C

section

<!— width: 500px —>
<section style="width: 500px;">

</section>

Y MO o e = I'g = VvV ® G > 5%

div

<!— width: 500px —>
<section style="width: 500px;">

<!— width: also 500px —>
<dliv style="display: grid;">
</div>

e Y New Tab X <+

& Q ® Q Search with DuckDuckGo or enter address v IN O © 0 :: .

div

<!— width: 100% of window —>
<section>

<!—— width: also 100% of window —>
<dliv style="display: grid;”>
</div>

e Y New Tab X <+

. o
& Q ® Q Search with DuckDuckGo or enter address v IN D © 0 ::

section

<!— width: 100% of window —>
<section>

<!—— width: [?] —>
<dliv style="display: grid; float: left;”>
</div>

e Y New Tab X <+

&« Q ® Q Search with DuckDuckGo or enter address v IN O © 0 :: Cﬁ R = V @ (0 o g%

Inline
size
(p 0 S a b S) section

<!— width: 100% of window —>
<section>

<!—— width: [?] —>
<dlv style=""display: grid; position: absolute;’”>
</div>

e) New Tab X <+

& Q ® Q Search with DuckDuckGo or enter address v IN O © 0 :: C:ﬁ R = V @ (0 o g%

Inline
size
(p OSa bs) hello world section

<!— width: 100% of window —>
<section>

<!— width: as much as content requires —>
<dlv style=""display: grid; position: absolute;’”>
hello world

@ Y New Tab X -+

& c @' O\ Search with DuckDuckGo or enter address

hello world section

<!— width: 100% of window —>
<section>

<!— width: as much as content requlires —>
<dliv style=""display: 1nline-grid;”>
hello world

GRID CONTAINER

INUNE

GRID CONTAINER

INUNE

Size of
containing
element

— grid has no explicit width

GRID CONTAINER

INUNE
Size of Size that
containing the content
element needs

WHEN WHEN
— grid has no explicit width — float Or position:absolute

— inline-grid has no explicit width

GRID CONTAINER

INUNE

Size of Size that Size that
containing the content you
element needs specified
WHEN WHEN WHEN

— grid has no explicit width — float or position:absolute — you specified a size

— inline-grid has no explicit width

GRID CONTAINER

BIOCK SIZE

GRID CONTAINER

BIOCK SIZE

Size of
containing

— position:absolute

GRID CONTAINER

BIOCK SIZE

Size of Size that
containing the content
element needs

WHEN WHEN

- posit absolute - no exception applies
and it has he|ght 100%

GRID CONTAINER

BIOCK SIZE

Size of Size that Size that

containing the content you
element needs specified
WHEN WHEN WHEN

— position:absolute - no exception applies — you specified a size

and it has height 100%

1[I
GKID TRACKS

1[I
GKRID TRACKS ’rows

Creating .grid g

CO’UmnS display: grid;
crid-template-columns: 100px 400px 200pXx;

5

Creating .grid g
rows display: grid;
crid-template-rows: 100px 400px 200pXx;

5

111
GKID TRACKS: FIXED

Fixed
sizes

.grid 3
display: grid;
crid-template-columns: 5Scm 10cm 5Scm;

5

Fixed
sizes

.grid 3
display: grid;
crid-template-columns: 200px S500px 100pXx;
5

Fixed
sizes

.grid 3
display: grid;
crid-template-columns: 5S0em 120ch 5S0rem;
5

.grid 3
display: grid;
grid-template-columns: /* use any size here */;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

RELATIVE

.grid 3
display: grid;
grid-template-columns: /* use any size here */;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

RELATIVE ABSOLUTE

.grid 3
display: grid;
grid-template-columns: /* use any size here */;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed
sizes

RELATIVE ABSOLUTE
—em
— ex
—ch
—rem

font

.grid 3
display: grid;
grid-template-columns: /* use any size here */;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed
sizes

RELATIVE ABSOLUTE
-em |
— €X

— ch

font

viewport

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed

RELATIVE ABSOLUTE
sizes o .

i 3](font) gm

—rem —1n

—vw - pC

-vh | - pt

_ymin |viewport ~ DX

— vmax

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed

RELATIVE ABSOLUTE
Sizes —em T — (M 1lcm = 96px/2.54
i 3](font) gm
—rem —1n
—vwW] e
— VN | - pt
_ymin |viewport ~ DX
— VMax

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed

RELATIVE ABSOLUTE
O —em T — (M 1lcm = 96px/2.54
S’zeS — eX — MM 1Imm = 1/10th of 1lcm
font

—ch -Q

—rem —1n

—vw - pC

- vh . - pt

_ymin |viewport ~ DX

— Vmax

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed

RELATIVE ABSOLUTE
O —em T — (M 1lcm = 96px/2.54
S’zes — X — MM 1mm = 1/10th of 1cm
—¢ch font —(Q 1Q = 1/40th of 1cm
—rem —1n
—vw - pC
— VN | - pt
_ymin |viewport ~ DX
— Vmax

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed

RELATIVE ABSOLUTE
O —em T — (M 1lcm = 96px/2.54

S’zes — ex —mm 1mm = 1/10th of 1cm
—¢ch font — () 1Q = 1/40th of 1cm
—rem — 1IN 1in = 2.54cm = 96px
—vw - pC
-vh | - pt
—vmin viewport ~ pX
— VIMaxX

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed

RELATIVE ABSOLUTE
O —em T — (M 1lcm = 96px/2.54

S’zes — ex —mm 1mm = 1/10th of 1cm
—¢ch font —(Q 1Q = 1/40th of 1cm
—rem — N lin = 2.54cm = 96px
— VW T —PC 1pc = 1/6th of 1in
— VN | - pt
_ymin |viewport ~ DX
—VMax

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed

RELATIVE ABSOLUTE
O —em T — (M 1lcm = 96px/2.54

S’zeS — eX — MM 1Imm = 1/10th of 1lcm
—¢ch font —(Q 1Q = 1/40th of 1cm
—rem — N lin = 2.54cm = 96px
— VW T —PC 1pc = 1/6th of 1in
— VN . — pt 1pt = 1/72th of 1in
_ymin |viewport ~ DX
— VMaXxX

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed

RELATIVE ABSOLUTE
O —em T — (M 1lcm = 96px/2.54

S’zes — eX — MM 1Imm = 1/10th of 1lcm
—¢ch font —(Q 1Q = 1/40th of 1cm
—rem — N 1in = 2.54cm = 96px
— VW T —PC 1pc = 1/6th of 1in
— VN . — pt 1pt = 1/72th of 1in
_vmin |viewport — DX 1px = 1/96th of lin
— VMaXxX

display: grid;
grid-template-columns: /* use any size here */,;

5

CSS Values and Units Module Level 3 - https://www.w3.0org/TR/css-values-3/

Fixed
sizes

"In CSS sizing primitives, a Tixed size means a size
that is independent of layout or content”

- Fantasai, in her talk "Defining auto”

Fantasai, “Defining auto” - http://fantasai.inkedblade.net/style/talks/defining-auto/#sizing-primitives

Fixed
track
sizes

& HTML % CSS

<section> section {
<d1v>000</d1v> display: grid;
<d1v>000</d1iv> grid-template-columns:
<d1v>000</d1v> }) \

</section>

Fixed
track
sizes

& HTML ® CSS

<section> section {
<d1v>000</d1iv> display: grid;
<div>Singapore</div> grid-template-columns:
<div>000</div> T \

</section>

Fixed
track
sizes

& HTML % CSS

<section> section {
<d1v>000</d1v> display: grid;
<div>Singapore</div> grid-template-columns: 3ch 3cl
<d1v>000</d1v>

</section>

Fixed
track
sizes

& HTML & CSS

<section> div:nth-child(2) {
<d1v>000</d1v> color: green;
<div>Singapore</div> overflow: hidden;
<d1v>000</d1v>

</section>

OOOSm OOO

1[I
GKID TRACKS: FRACTIONS

Fractions

[l co oot Goto

.grid 3
display: grid;
crid-template-columns: 50em 1fr 10em;

5

Sizing
with
fractions

¢ HTML & CSS

<section> section {
<div></div> display: grid;

<div></div> grid-template-columns:
<div></div>

</section>
Aiviend+th_~haTACON\ S

Sizing
with.
fractions

¢ HTML & CSS

<section> section {
<div></div> Iisplay: grid;
<div>blijkbaar</div> jrid-template-columns:
<div></div> ¥

</section>
Aivien+th_~h1 1A\ S

This default is a feature, usually you
don’t want text on top of other text.

The distribution of lettover space occurs after all non-
flexible track sizing functions have reached their
maximum.

in “CSS Grid Layout Module Level 1"

Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen Atanassov “CSS Grid Layout Module Level 2" - https://www.w3.0rg/TR/css-grid-2/

The distribution of lettover space occurs after all non-
flexible track sizing functions have reached their
maximum. The total size of such rows or columns is
subtracted from the available space, yielding the
|eftover space,

in "CSS Grid Layout Module Level 1"

Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen Atanassov “CSS Grid Layout Module Level 2" - https://www.w3.0rg/TR/css-grid-2/

The distribution of lettover space occurs after all non-
flexible track sizing functions have reached their
maximum. The total size of such rows or columns is
subtracted from the available space, yielding the
leftover space, which is then divided among the flex-
sized rows and columns in proportion to their flex
factor.

in “CSS Grid Layout Module Level 1"

Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen Atanassov “CSS Grid Layout Module Level 2" - https://www.w3.0rg/TR/css-grid-2/

Sizing
with
fractions

& HTML vi.. [®CSS

<section> section {
<div></div>
<div>blijkbaar</div>
<div></div>

</section>

Sizing
with.
fractions

¢ HTML & CSS

<section> section {
lisplay: grid;

<div></div> disp
<div>bl1ijkbaar</div> grid-template-columns:
<div></div> }

</section>
Aivienth_FhaT1ACO\ S

One cell in a track can
affect the whole track’s size.

Sizing
with.
fractions

"It you [don't want your track to grow to prevent
overflow], you can do so by making 0 the first
value in minmax(). “

- Rachel Andrew, in "CSS Writing Modes" on 24 Ways

Rachel Andrew, “"How big is that box?" - https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/

Fractions

.grid 3
display: grid;
grid-template-columns:

50em 1fr 10em;

Fractions

.grid 3
display: grid;
grid-template-columns:

50em minmax (0, 1fr) 10em;

111
GKID TRACKS: KEYWORDS

min-content

o CSS

.grid {
display: grid;
grid-template-columns:
min-content min-content min-content;

min-content

o CSS Result

.grid {
lisplay: grid,;

grid-template-columns:

min-content min-content min-content;

max-content

o CSS

.grid {
display: grid;

grid-template-columns:

max-content max-content max-content,

fit-content(value)

o HTML CSS Result

.grid {

I 2 _:| ~:_AJ r'l:":: ':-f o) ,-'f“" ATJ ._- ,'F .
| v

max-content fit-content(50px) max-content;

1[I
GKID TRACKS: AUTo

.grid 3
display: grid;
crid-template-columns: 50em auto 10em;

5

Auto is what you'll get if
you don't size your track.

(Overridable with grid-auto-rows / grid-auto-columns)

.grid 3
display: grid;

5

Auto
track
size

Maximum track size: of all grid items,
pick the one with the largest
max—content.Thisisyour track size.

Auto
track
size

Penne

Maximum track size: of all grid items,
pick the one with the largest
max—content.Thisisyour track size.

Auto
track
size

Maximum track size: of all grid items,
pick the one with the largest
max—content.Thisisyour track size.

Auto
track
size

Minimum track size: pick the grid item
with the largest minimum™ size. That's
your track's minimum size.

Auto
track
size

Minimum track size: pick the grid item
with the largest minimum™ size. That's
your track's minimum size.

* min-width/min-height value

Auto
track
size

Minimum track size: pick the grid item
with the largest minimum™ size. That's
your track's minimum size.

* min-width/min-height value
** usually like min-content

GRID TRACKS

GRID TRACKS

Size you
specified

WHEN

— you use fixed sizing
units (relative or absolute)

GRID TRACKS

Size you
specified
WHEN WHEN
— you use fixed sizing — there's a long word

units (relative or absolute)

Size you
specified

WHEN

— you use fixed sizing
units (relative or absolute)

GRID TRACKS

WHEN
—there's a long word

More than you
specified

Something
perfect

WHEN
— you've given the
orowser flexibility: keywords,
fractions, auto.

1[I
GKID ITeMS

Grid item size depends
on alignment.

Alignment is what happens
when you have more space
than content.

Alignment is what happens
when you have more space
than content.

Alignment is what happens
when you have more space
than content.

Alignment is what happens
when you have more space
than content. You can only
do it if you have more space,
because if there is text

everywhere, it cannot align.

Alignment is what happens
when you have more space
than content. You can only
do it if you have more space,
because if there is text
everywhere, it cannot align.

Alignment is what happens
when you have more space
than content. You can only
do it if you have more space,
because if there is text
everywhere, it cannot align.

The ;:ﬁve éboxing ;Wizards

N
)
)

5

A grid with
five items

<div> div $
<p>The</p> display: grid;
<p>five</p> grid-template-columns: 1fr 2fr 50ch 2fr;

<p>boxing</p> grid-template-rows: 1fr;
<p>wlzards</p> background—-color: gold;
</div> min—-height: 80vh;

The ;:ﬁve éboxing ;Wizards

N
)
)

5

A grid with
five items

The default alignment
isstretch,so al
whitespace is used.

<div> div $
<p>The</p> display: grid;
<p>five</p> grid-template-columns: 1fr 2fr 50ch 2fr;

<p>boxing</p> grid-template-rows: 1fr;
<p>wlzards</p> background—-color: gold;
</div> min—-height: 80vh;

' /iThe ;:ﬁve boxing ;Wizards

A grid with
five items

<div> p 2
<p>The</p> background—-color: skyblue;
<p>five</p> kS

<p>boxing</p>
<p>wlzards</p>
</div>

5
)
-

5

' The ;:ﬁve boxing ;Wizards

A grid with
five items

<div> p 2
<p>The</p> background—-color: skyblue;
<p>five</p> kS

<p>boxing</p>
<p>wlzards</p>
</div>

A grid with
five items

The default alignm
isstretch,so al

whitespace is used.

<div>
<p>The</p>

<p>five</p>

ent

<p>boxing</p>
<p>wlzards</p>
</div>

' The ;:ﬁve boxing ;Wizards

p 2

background—-color: skyblue;

5

The é:ﬁve éboxing ;Wizards

Istretch (start)

0

<div> D 3
<p>The</p> background—-color: skyblue;
<p>five</p> aligh-self: start;
<p>boxing</p> kS

<p>wlzards</p>
</div>

P ‘] o1
Istretch (start)
It grid items are
aligned other than
stretch, theirsize is
what is needed.
% oR

<div> p 2
<p>The</p> background—-color: skyblue;

<p>five</p> aligh-self: start;

<p>boxing</p> kS
<p>wlzards</p>
</div>

Istretch (start)

It grid items are
aligned other than
stretch, theirsize is
what is needed.

<div>
<p>The</p>
<p>five</p>

<p>boxing</p>
<p>wlzards</p>
</div>

p 2

background-color: skybluej;
margin-bottom: auto;

5

uy () N () -

" [The i:ﬁve Eboxing éwizards N

o @
(4) ()

Istretch (start)

It grid items are
aligned other than
stretch, theirsize is
what is needed.

<div>
<p>The</p>
<p>five</p>

<p>boxing</p>
<p>wlzards</p>
</div>

p 2

background-color: skybluej;
margin-block—-end: auto;

5

uy () N () -

" [The i:ﬁve Eboxing éwizards N

o @
(4) ()

Istretch (end)

It grid items are
aligned other than
stretch, theirsize is
what is needed.

<div>
<p>The</p>
<p>five</p>
<p>boxing</p>
<p>wlzards</p>
</div>

p 2

background-color:
aligh-self: end;

5

ol e g ol
E/\E 5ghe ve @ oxing é”lzar S [1j\/Z

skyblue;

Istretch (end)

It grid items are

aligned othert

stretch, thei

Ndl

rsize1s

what is needed.

The cell they are in

can still be larg

<div>

el.

<p>The</p>
<p>five</p>

<p>boxing</p>
<p>wlzards</p>
</div>

wizards

p 2

background-color: skybluej;
aligh-self: end;

5

GRID ITEMS

GRID ITEMS

— itemis aligned “stretch”

GRID ITEMS

WHEN WHEN
— item is aligned “stretch” — item is aligned in a way that

leaves whitespace

GRID ITEMS

Size of Size that the
track content needs
WHEN WHEN

— item is aligned “stretch” — item is aligned in a way that

leaves whitespace, or has
an auto margin that returns
whitespace to the track

111
CONCLUDING..

Grid Layout helps with
more international CSS,
by being less physical.

Grid Layout helps with
more international CSS,
by being less physical.

For websites, letting the
browser decide flexibly,
can make your life easier.

MORE READING/WATCHING

» Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen
Atanassov “CSS Grid Layout Module Level 2" (https://
www.w3.0rg/TR/css-grid-2/)

» Rachel Andrew, “How Big Is That Box? Understanding
Sizing In CSS Layout” (https://
www.smashingmagazine.com/2018/01/understanding-
sizing-css-layout/)

» Elika J. Etemad (fantasai), “Defining auto” (https://
vimeo.com/134597090)

» HuiJing Chen, "Vertical typesetting with writing-mode
revisited” (https://chenhuijing.com/blog/vertical-
typesetting-revisited/#%F0%9F%91%9F)

» Rachel Andrew, "Writing Modes and CSS

Layout” (https://www.smashingmagazine.com/2019/08/
writing-modes-layout/)

» Jen Simmons, "CSS Writing Modes" (https://
24ways.org/2016/css-writing-modes/)

https://www.w3.org/TR/css-grid-2/
https://www.w3.org/TR/css-grid-2/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://vimeo.com/134597090
https://vimeo.com/134597090
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://24ways.org/2016/css-writing-modes/
https://24ways.org/2016/css-writing-modes/
https://www.w3.org/TR/css-grid-2/
https://www.w3.org/TR/css-grid-2/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://vimeo.com/134597090
https://vimeo.com/134597090
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://24ways.org/2016/css-writing-modes/
https://24ways.org/2016/css-writing-modes/

MORE READING/WATCHING

» Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen
Atanassov “CSS Grid Layout Module Level 2" (https://
www.w3.0rg/TR/css-grid-2/)

» Rachel Andrew, “How Big Is That Box? Understanding
Sizing In CSS Layout” (https://
www.smashingmagazine.com/2018/01/understanding-
sizing-css-layout/)

» Elika J. Etemad (fantasai), “Defining auto” (https://
vimeo.com/134597090)

» HuiJing Chen, "Vertical typesetting with writing-mode
revisited” (https://chenhuijing.com/blog/vertical-
typesetting-revisited/#%F0%9F%91%9F)

» Rachel Andrew, "Writing Modes and CSS

Layout” (https://www.smashingmagazine.com/2019/08/
writing-modes-layout/)

» Jen Simmons, "CSS Writing Modes" (https://
24ways.org/2016/css-writing-modes/)

SUDES: HTTPS//TAIKSHIDDEDEVRIESNL QUESTIONS: @HDV

THANK YOU!

https://talks.hiddedevries.nl
https://talks.hiddedevries.nl
https://www.w3.org/TR/css-grid-2/
https://www.w3.org/TR/css-grid-2/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://vimeo.com/134597090
https://vimeo.com/134597090
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://24ways.org/2016/css-writing-modes/
https://24ways.org/2016/css-writing-modes/
https://www.w3.org/TR/css-grid-2/
https://www.w3.org/TR/css-grid-2/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://vimeo.com/134597090
https://vimeo.com/134597090
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://24ways.org/2016/css-writing-modes/
https://24ways.org/2016/css-writing-modes/

