
On auto sizes
in Grid Layout

Hidde de Vries, TALK.CSS, 2-10-2020

Hidde de Vries
Freelance front-end developer, accessibility
specialistfrom Rotterdam, Netherlands.

@hdv ◇ hidde.blog

https://hiddedevries.nl/en/blog
https://hiddedevries.nl/en/blog

||||||||
Fixed canvas

Posters by Wim Crouwel

Photo JMB: MoMA

Photo JMB: MoMA

From: Wikipedia

From: Emerce

Digital
posters

From: Emerce

Digital
posters

“More relevant,
more local outreach
to our customers”

From: Emerce

Digital
posters

COULD! USE! CSS!

From: Emerce

Digital
posters

From: CERN (home.cern)

The web

The web is everywhere,
there are infinite canvases.

The web is everywhere,
there are infinite canvases.
And lots of languages.

The web is everywhere,
there are infinite canvases.
And lots of languages.
a lot of writing systems.

And

The web is everywhere,
there are infinite canvases.

CSS is here to help!

And lots of languages.
a lot of writing systems.

And

Fantasai, “Defining auto” ・ http://fantasai.inkedblade.net/style/talks/defining-auto/#sizing-primitives

Fixed
sizes “When we define auto in CSS, we want it give

reasonable results, avoid dataloss/overflow and
be a good default to build on”

— Fantasai, in her talk “Defining auto”

||||||||
TErminLOgy

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
contents. Unlike Flexible Box Layout, which is single-axis–oriented, Grid Layout is optimized for 2-dimensional layouts:
those in which alignment of content is desired in both dimensions.

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping of items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size–based line-wrapping system to control its secondary axis, and relies on the underlying markup

Block vs
inline

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
contents. Unlike Flexible Box Layout, which is single-axis–oriented, Grid Layout is optimized for 2-dimensional layouts:
those in which alignment of content is desired in both dimensions.

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping of items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size–based line-wrapping system to control its secondary axis, and relies on the underlying markup

Block vs
inline

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
contents. Unlike Flexible Box Layout, which is single-axis–oriented, Grid Layout is optimized for 2-dimensional layouts:
those in which alignment of content is desired in both dimensions.

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping of items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size–based line-wrapping system to control its secondary axis, and relies on the underlying markup

Block vs
inline

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
contents. Unlike Flexible Box Layout, which is single-axis–oriented, Grid Layout is optimized for 2-dimensional layouts:
those in which alignment of content is desired in both dimensions.

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping of items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size–based line-wrapping system to control its secondary axis, and relies on the underlying markup

Block vs
inline

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
contents. Unlike Flexible Box Layout, which is single-axis–oriented, Grid Layout is optimized for 2-dimensional layouts:
those in which alignment of content is desired in both dimensions.

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping of items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size–based line-wrapping system to control its secondary axis, and relies on the underlying markup

Block vs
inline

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Grid Layout is a layout model for CSS that has powerful abilities to control the sizing and positioning of boxes and their
contents. Unlike Flexible Box Layout, which is single-axis–oriented, Grid Layout is optimized for 2-dimensional layouts:
those in which alignment of content is desired in both dimensions.

Representative Flex Layout Example

Representative Grid Layout Example

In addition, due to its ability to explicitly position items in the grid, Grid Layout allows dramatic transformations in visual
layout structure without requiring corresponding markup changes. By combining media queries with the CSS properties
that control layout of the grid container and its children, authors can adapt their layout to changes in device form factors,
orientation, and available space, while preserving a more ideal semantic structuring of their content across presentations.

Although many layouts can be expressed with either Grid or Flexbox, they each have their specialties. Grid enforces 2-
dimensional alignment, uses a top-down approach to layout, allows explicit overlapping of items, and has more powerful
spanning capabilities. Flexbox focuses on space distribution within an axis, uses a simpler bottom-up approach to layout,
can use a content-size–based line-wrapping system to control its secondary axis, and relies on the underlying markup

Block vs
inline
(In left to right,
top to bottom layout)

https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css3-mediaqueries/

Writing
modes

Latin-based Mongolian-based

Han-based Arabic-based

or

CSS Writing Modes Level 4 ・ https://www.w3.org/TR/css-writing-modes-4/#writing-mode

Writing
modes

Latin-based Mongolian-based

Han-based Arabic-based

or

CSS Writing Modes Level 4 ・ https://www.w3.org/TR/css-writing-modes-4/#writing-mode

Vertical
type on the
web still
tricky

Vertical
type on the
web still
tricky

“Unfortunately, 10
minutes into the
attempt, I broke
my brain. ”

Jen Simmons, “CSS Writing Modes” ・ https://24ways.org/2016/css-writing-modes/

Writing
modes “I’ve found understanding Writing

Modes incredibly helpful when
understanding Flexbox and CSS Grid”

— Jen Simmons, in “CSS Writing Modes” on 24 Ways

Writing
modes

Latin-based Mongolian-based

Han-based Arabic-based

or

CSS Writing Modes Level 4 ・ https://www.w3.org/TR/css-writing-modes-4/#writing-mode

Writing
modes

Latin-based Mongolian-based

Han-based Arabic-based

or

CSS Writing Modes Level 4 ・ https://www.w3.org/TR/css-writing-modes-4/#writing-mode

.grid {
 writing-mode: horizontal-tb;
 writing-mode: vertical-rl;
 writing-mode: vertical-lr;
 writing-mode: sideways-rl;
 writing-mode: sideways-lr;
}

||||||||
THe Grid ConTAiner

Creating
a Grid

.grid {
 display: grid;
 grid-template-columns: 5cm 10cm 5cm;
}

.grid {
 display: grid;
 grid-template-columns: 200px 500px 100px;
}

.grid {
 display: grid;
}

Inline
size

Inline
size

section

<!—- width: 100% of window -—>
<section></section>

Inline
size

section

<!—- width: 100% of window -—>
<section>
<!—- width: also 100% of window -—>

 <div style="display: grid;">
 </div>

Inline
size

section
div

<!—- width: 500px -—>
<section style="width: 500px;">
</section>

Inline
size section

<!—- width: 500px -—>
<section style="width: 500px;">
<!—- width: also 500px -—>

 <div style="display: grid;">
 </div>

Inline
size sectiondiv

<!—- width: 100% of window -—>
<section>
<!—- width: also 100% of window -—>

 <div style="display: grid;”>
 </div>

Inline
size (float)

section
div

<!—- width: 100% of window -—>
<section>
<!—- width: [?] -—>

 <div style="display: grid; float: left;”>
 </div>

Inline
size (float)

section

<!—- width: 100% of window -—>
<section>
<!—- width: [?] -—>

 <div style="display: grid; position: absolute;”>
 </div>

Inline
size
(posabs) section

<!—- width: 100% of window -—>
<section>
<!—- width: as much as content requires -—>

 <div style="display: grid; position: absolute;”>
 hello world

Inline
size
(posabs) sectionhello world

<!—- width: 100% of window -—>
<section>
<!—- width: as much as content requires -—>

 <div style="display: inline-grid;”>
 hello world

Inline
grid

sectionhello world

||||||||
Grid conTAiner
inLIne

Size of
containing
element

— grid has no explicit width

||||||||
Grid conTAiner

WHEN

inLIne

Size of
containing
element

Size that
the content
needs

— grid has no explicit width — float or position:absolute
— inline-grid has no explicit width

||||||||
Grid conTAiner

WHEN WHEN

inLIne

Size of
containing
element

Size that
the content
needs

Size that
you
specified

— grid has no explicit width — float or position:absolute
— inline-grid has no explicit width

— you specified a size

||||||||
Grid conTAiner

WHEN WHEN WHEN

inLIne

||||||||
Grid conTAiner
bLOck size

Size of
containing
element

— position:absolute

||||||||
Grid conTAiner

WHEN

bLOck size

 and it has height 100%

Size of
containing
element

Size that
the content
needs

— position:absolute — no exception applies

||||||||
Grid conTAiner

WHEN WHEN

bLOck size

 and it has height 100%

Size of
containing
element

Size that
the content
needs

Size that
you
specified

— position:absolute — no exception applies — you specified a size

||||||||
Grid conTAiner

WHEN WHEN WHEN

bLOck size

 and it has height 100%

||||||||
Grid Tracks

||||||||
Grid Tracks coLUmns

/ rows

Creating
columns

.grid {
 display: grid;
 grid-template-columns: 5cm 10cm 5cm;
}

.grid {
 display: grid;
 grid-template-columns: 200px 500px 100px;
}

.grid {
 display: grid;
 grid-template-columns: 100px 400px 200px;
}

Creating
rows

.grid {
 display: grid;
 grid-template-columns: 5cm 10cm 5cm;
}

.grid {
 display: grid;
 grid-template-columns: 200px 500px 100px;
}

.grid {
 display: grid;
 grid-template-rows: 100px 400px 200px;
}

||||||||
Grid Tracks: FIXED

Fixed
sizes

.grid {
 display: grid;
 grid-template-columns: 5cm 10cm 5cm;
}

Fixed
sizes

.grid {
 display: grid;
 grid-template-columns: 5cm 10cm 5cm;
}

.grid {
 display: grid;
 grid-template-columns: 200px 500px 100px;
}

Fixed
sizes

.grid {
 display: grid;
 grid-template-columns: 5cm 10cm 5cm;
}

.grid {
 display: grid;
 grid-template-columns: 200px 500px 100px;
}

.grid {
 display: grid;
 grid-template-columns: 50em 120ch 50rem;
}

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

RELATIVE

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

RELATIVE ABSOLUTE

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE ABSOLUTE

font

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE
— cm
— mm
— Q
— in
— pc
— pt
— px

ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE
— cm
— mm
— Q
— in
— pc
— pt
— px

ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

1cm = 96px/2.54
Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE
— cm
— mm
— Q
— in
— pc
— pt
— px

ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

1cm = 96px/2.54

1mm = 1/10th of 1cm

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE
— cm
— mm
— Q
— in
— pc
— pt
— px

ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

1cm = 96px/2.54

1mm = 1/10th of 1cm

1Q = 1/40th of 1cm

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE
— cm
— mm
— Q
— in
— pc
— pt
— px

ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

1cm = 96px/2.54

1mm = 1/10th of 1cm

1Q = 1/40th of 1cm

1in = 2.54cm = 96px

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE
— cm
— mm
— Q
— in
— pc
— pt
— px

ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

1cm = 96px/2.54

1mm = 1/10th of 1cm

1Q = 1/40th of 1cm

1in = 2.54cm = 96px

1pc = 1/6th of 1in

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE
— cm
— mm
— Q
— in
— pc
— pt
— px

ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

1cm = 96px/2.54

1mm = 1/10th of 1cm

1Q = 1/40th of 1cm

1in = 2.54cm = 96px

1pc = 1/6th of 1in

1pt = 1/72th of 1in

Fixed
sizes

CSS Values and Units Module Level 3 ・ https://www.w3.org/TR/css-values-3/

— em
— ex
— ch
— rem

RELATIVE
— cm
— mm
— Q
— in
— pc
— pt
— px

ABSOLUTE

font

viewport

— vw
— vh
— vmin
— vmax

.grid {
 display: grid;
 grid-template-columns: /* use any size here */;
}

1cm = 96px/2.54

1mm = 1/10th of 1cm

1Q = 1/40th of 1cm

1in = 2.54cm = 96px

1pc = 1/6th of 1in

1pt = 1/72th of 1in

1px = 1/96th of 1in

Fixed
sizes

Fantasai, “Defining auto” ・ http://fantasai.inkedblade.net/style/talks/defining-auto/#sizing-primitives

Fixed
sizes

“In CSS sizing primitives, a fixed size means a size
that is independent of layout or content”

— Fantasai, in her talk “Defining auto”

Fixed
track
sizes

Fixed
track
sizes

Fixed
track
sizes

Fixed
track
sizes

||||||||
Grid Tracks: FRACTIONS

Fractions
This is not auto

.grid {
 display: grid;
 grid-template-columns: 50em 1fr 10em;
}

Sizing
with
fractions

Sizing
with
fractions

This default is a feature, usually you
don’t want text on top of other text.

Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen Atanassov “CSS Grid Layout Module Level 2” ・ https://www.w3.org/TR/css-grid-2/

Sizing
with
fractions

The distribution of leftover space occurs after all non-
flexible track sizing functions have reached their
maximum. The total size of such rows or columns is
subtracted from the available space, yielding the
leftover space, which is then divided among the flex-
sized rows and columns in proportion to their flex
factor.

in “CSS Grid Layout Module Level 1”

Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen Atanassov “CSS Grid Layout Module Level 2” ・ https://www.w3.org/TR/css-grid-2/

Sizing
with
fractions

The distribution of leftover space occurs after all non-
flexible track sizing functions have reached their
maximum. The total size of such rows or columns is
subtracted from the available space, yielding the
leftover space, which is then divided among the flex-
sized rows and columns in proportion to their flex
factor.

in “CSS Grid Layout Module Level 1”

The distribution of leftover space occurs after all non-
flexible track sizing functions have reached their
maximum. The total size of such rows or columns is
subtracted from the available space, yielding the
leftover space, which is then divided among the flex-
sized rows and columns in proportion to their flex
factor.

in “CSS Grid Layout Module Level 1”

Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen Atanassov “CSS Grid Layout Module Level 2” ・ https://www.w3.org/TR/css-grid-2/

Sizing
with
fractions

The distribution of leftover space occurs after all non-
flexible track sizing functions have reached their
maximum. The total size of such rows or columns is
subtracted from the available space, yielding the
leftover space, which is then divided among the flex-
sized rows and columns in proportion to their flex
factor.

in “CSS Grid Layout Module Level 1”

The distribution of leftover space occurs after all non-
flexible track sizing functions have reached their
maximum. The total size of such rows or columns is
subtracted from the available space, yielding the
leftover space, which is then divided among the flex-
sized rows and columns in proportion to their flex
factor.

in “CSS Grid Layout Module Level 1”

The distribution of leftover space occurs after all non-
flexible track sizing functions have reached their
maximum. The total size of such rows or columns is
subtracted from the available space, yielding the
leftover space, which is then divided among the flex-
sized rows and columns in proportion to their flex
factor.

in “CSS Grid Layout Module Level 1”

Sizing
with
fractions

Sizing
with
fractions

One cell in a track can
affect the whole track’s size.

Rachel Andrew, “How big is that box?” ・ https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/

Sizing
with
fractions

“If you [don’t want your track to grow to prevent
overflow], you can do so by making 0 the first
value in minmax(). ”

— Rachel Andrew, in “CSS Writing Modes” on 24 Ways

Fractions .grid {
 display: grid;
 grid-template-columns:
 50em 1fr 10em;
}

Fractions .grid {
 display: grid;
 grid-template-columns:
 50em minmax(0, 1fr) 10em;
}

||||||||
Grid Tracks: keywords

min-content

min-content

max-content

fit-content(value)

||||||||
Grid Tracks: AUTO

Auto
track
size

.grid {
 display: grid;
 grid-template-columns: 50em auto 10em;
}

Auto is what you'll get if
you don't size your track.

(Overridable with grid-auto-rows / grid-auto-columns)

Auto
track
size

.grid {
 display: grid;
}

Maximum track size: of all grid items,
pick the one with the largest
max-content. This is your track size.

Auto
track
size

Maximum track size: of all grid items,
pick the one with the largest
max-content. This is your track size.

Penne

Spaghetti

Farfalle

Auto
track
size

Maximum track size: of all grid items,
pick the one with the largest
max-content. This is your track size.

Auto
track
size

Penne

Cannelloni

Farfalle

Minimum track size: pick the grid item
with the largest minimum* size. That’s
your track’s minimum size.

Auto
track
size

Penne

Cannelloni

Farfalle

Minimum track size: pick the grid item
with the largest minimum* size. That’s
your track’s minimum size.

Auto
track
size

Penne

Cannelloni

Farfalle
* min-width/min-height value

Minimum track size: pick the grid item
with the largest minimum* size. That’s
your track’s minimum size.

Auto
track
size

Penne

Cannelloni

Farfalle
* min-width/min-height value
** usually like min-content

||||||||
Grid tracks

Size you
 specified

— you use fixed sizing
 units (relative or absolute)

||||||||
Grid tracks

WHEN

Size you
 specified

More than you
specified

— you use fixed sizing
 units (relative or absolute)

— there’s a long word

||||||||
Grid tracks

WHEN WHEN

Size you
 specified

More than you
specified

— you use fixed sizing
 units (relative or absolute)

— there’s a long word

||||||||
Grid tracks

Something
perfect

— you’ve given the
 browser flexibility: keywords,
 fractions, auto.

WHEN WHEN WHEN

||||||||
Grid ITEms

Grid item size depends
on alignment.

Alignment is what happens
when you have more space
than content.

Alignment is what happens
when you have more space
than content.

Alignment is what happens
when you have more space
than content.

Alignment is what happens
when you have more space
than content. You can only
do it if you have more space,
because if there is text
everywhere, it cannot align.

Alignment is what happens
when you have more space
than content. You can only

do it if you have more space,
because if there is text

everywhere, it cannot align.

Alignment is what happens
when you have more space
than content. You can only

do it if you have more space,
because if there is text

everywhere, it cannot align.

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

A grid with
five items

div {
 display: grid;
 grid-template-columns: 1fr 2fr 50ch 2fr;
 grid-template-rows: 1fr;
 background-color: gold;
 min-height: 80vh;
}

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

A grid with
five items

div {
 display: grid;
 grid-template-columns: 1fr 2fr 50ch 2fr;
 grid-template-rows: 1fr;
 background-color: gold;
 min-height: 80vh;
}

The default alignment
is stretch, so all
whitespace is used.

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

A grid with
five items

p {
 background-color: skyblue;
}

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

A grid with
five items

p {
 background-color: skyblue;
}

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

A grid with
five items

p {
 background-color: skyblue;
}

The default alignment
is stretch, so all
whitespace is used.

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

!stretch (start)

p {
 background-color: skyblue;
 align-self: start;
}

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

!stretch (start)

p {
 background-color: skyblue;
 align-self: start;
}

If grid items are
aligned other than
stretch, their size is
what is needed.

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

!stretch (start)

p {
 background-color: skyblue;
 margin-bottom: auto;
}

If grid items are
aligned other than
stretch, their size is
what is needed.

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

!stretch (start)

p {
 background-color: skyblue;
 margin-block-end: auto;
}

If grid items are
aligned other than
stretch, their size is
what is needed.

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

!stretch (end)

p {
 background-color: skyblue;
 align-self: end;
}

If grid items are
aligned other than
stretch, their size is
what is needed.

<div>
 <p>The</p>
 <p>five</p>
 <p>boxing</p>
 <p>wizards</p>
</div>

!stretch (end)

p {
 background-color: skyblue;
 align-self: end;
}

If grid items are
aligned other than
stretch, their size is
what is needed.

The cell they are in
can still be larger.

||||||||
Grid ITEms

Size of
track

— item is aligned “stretch”

||||||||
Grid ITEms

WHEN

Size of
track

Size that the
content needs

— item is aligned “stretch” — item is aligned in a way that
 leaves whitespace

||||||||
Grid ITEms

WHEN WHEN

Size of
track

Size that the
content needs

— item is aligned “stretch” — item is aligned in a way that
 leaves whitespace

||||||||
Grid ITEms

WHEN WHEN

 , or has
 an auto margin that returns
 whitespace to the track

||||||||
ConcLUding…

Grid Layout helps with
more international CSS,
by being less physical.

Grid Layout helps with
more international CSS,
by being less physical.

For websites, letting the
browser decide flexibly,
can make your life easier.

MORE READING/WATCHING
‣ Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen
Atanassov “CSS Grid Layout Module Level 2” (https://
www.w3.org/TR/css-grid-2/)
‣ Rachel Andrew, “How Big Is That Box? Understanding
Sizing In CSS Layout” (https://
www.smashingmagazine.com/2018/01/understanding-
sizing-css-layout/)
‣ Elika J. Etemad (fantasai), “Defining auto” (https://
vimeo.com/134597090)
‣ Hui Jing Chen, “Vertical typesetting with writing-mode
revisited” (https://chenhuijing.com/blog/vertical-
typesetting-revisited/#%F0%9F%91%9F)
‣ Rachel Andrew, “Writing Modes and CSS
Layout” (https://www.smashingmagazine.com/2019/08/
writing-modes-layout/)
‣ Jen Simmons, “CSS Writing Modes” (https://
24ways.org/2016/css-writing-modes/)

https://www.w3.org/TR/css-grid-2/
https://www.w3.org/TR/css-grid-2/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://vimeo.com/134597090
https://vimeo.com/134597090
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://24ways.org/2016/css-writing-modes/
https://24ways.org/2016/css-writing-modes/
https://www.w3.org/TR/css-grid-2/
https://www.w3.org/TR/css-grid-2/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://vimeo.com/134597090
https://vimeo.com/134597090
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://24ways.org/2016/css-writing-modes/
https://24ways.org/2016/css-writing-modes/

Thank you!
Slides: https://talks.hiddedevries.nl Questions: @hdv

MORE READING/WATCHING
‣ Tab Atkins Jr., Elika J. Etemad / fantasai, Rossen
Atanassov “CSS Grid Layout Module Level 2” (https://
www.w3.org/TR/css-grid-2/)
‣ Rachel Andrew, “How Big Is That Box? Understanding
Sizing In CSS Layout” (https://
www.smashingmagazine.com/2018/01/understanding-
sizing-css-layout/)
‣ Elika J. Etemad (fantasai), “Defining auto” (https://
vimeo.com/134597090)
‣ Hui Jing Chen, “Vertical typesetting with writing-mode
revisited” (https://chenhuijing.com/blog/vertical-
typesetting-revisited/#%F0%9F%91%9F)
‣ Rachel Andrew, “Writing Modes and CSS
Layout” (https://www.smashingmagazine.com/2019/08/
writing-modes-layout/)
‣ Jen Simmons, “CSS Writing Modes” (https://
24ways.org/2016/css-writing-modes/)

https://talks.hiddedevries.nl
https://talks.hiddedevries.nl
https://www.w3.org/TR/css-grid-2/
https://www.w3.org/TR/css-grid-2/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://vimeo.com/134597090
https://vimeo.com/134597090
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://24ways.org/2016/css-writing-modes/
https://24ways.org/2016/css-writing-modes/
https://www.w3.org/TR/css-grid-2/
https://www.w3.org/TR/css-grid-2/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://www.smashingmagazine.com/2018/01/understanding-sizing-css-layout/
https://vimeo.com/134597090
https://vimeo.com/134597090
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://chenhuijing.com/blog/vertical-typesetting-revisited/#%F0%9F%91%9F
https://24ways.org/2016/css-writing-modes/
https://24ways.org/2016/css-writing-modes/

