High-performing Engineering
Teams, and the Holy Grail

2 |

CNCF Cloud Native Landscape Overwhelmed? Please see the CNCF Trail Map. That and the interactive landscape are at |L.oncl.io

Database Streaming & Messaging Application Defirition & knage Build Continuous Integration & Defivery

;
;
5
:
|

T — Coardination & Service Remote Procedure

Discovery

Orchestration &
Ik 5 g ement

Runtme

Pravisianing

Certified

Kubernetes Certified Service Provider Kubemetes Training Partner CNFe

: |..,-g| R — |.....

Jeremy Meiss

Director, DevRel &

CircleCl

So back to the tech industry...

afee

%_H .

'-. : I
i "

Ol Vil
{

HE HOLY GRAIL

YOU SEE

Forrester 2021 Total Economic Impact
Study

Using best-in-class CI/CD platform can provide:

$7.8 million saved from shorter software development cycles.
$4.3 million recuperated in lost developer productivity.

50% decrease in annual infrastructure spend.

$1.7 million estimated value of improved code quality.

State of
DevOps
Report

TR IRENY

-,

Image: Consumer Choice Center

Cl/CD Benchmarks for high-

performing teams

()

Duration Mean time to resolve Success rate Throughput

&, o %7

Duration

the foundation of software engineering velocity, measures the average
time in minutes required to move a unit of work through your pipeline

And There Was Much Rejoicing

Duration Benchmark

<=10 minute builds

"a good rule of thumb is to keep your builds to no more than ten
minutes. Many developers who use Cl follow the practice of not moving
on to the next task until their most recent check-in integrates
successfully. Therefore, builds taking longer than ten minutes can
interrupt their flow."

- Paul M. Duvall (2007). Continuous Integration: Improving Software Quality and Reducing Risk

Duration: What the data shows

' l l “ WHAT SHOULD YOUR
1) WORKFLOW DURATION BE?

—

B 25% of workflows complete in under a minute.

B 50% of workflows complete in under 3.3 minutes.
75% of workflows complete in less than 9 minutes.

Benchmark: 5-10mins

Improving test coverage

Add unit, integration, Ul, end-to-end testing across all app layers
Add code coverage into pipelines to identify inadequate testing
Include static and dynamic security scans to catch vulnerabilities
Incorporate TDD practices by writing tests during design phase

Optimizing your pipelines

Use test splitting & parallelism for simultaneous multiple tests
Cache dependencies & data to avoid rebuilding unchanged code
Use Docker images custom made for Cl environments

Choose the right machine size for your needs

Mean time to Recovery

the average time required to go from a failed build signal to a successful
pipeline run

e

s .

Source control server

"A key part of doing a continuous build is that if the mainline build fails,
it needs to be fixed right away. The whole point of working with Cl is that
you're always developing on a known stable base."

- Martin Fowler (2006). “Continuous Integration.” Web blog post. MartinFowler.com

MTTR Benchmark

<=60min MTTR on default branches

MTTR: What the data shows

WHAT ARE THE BENCHMARKS
FOR MEAN TIME TO RECOVERY?

0%

<3 MIN

20%

<15 MIN

- lr"‘] Qy

1_)“ I'L.i "f' GI

<64 MIN

B The fastest 5% of workflows recovered in <5 minutes.
B 25% of all workflows recovered in <15 minutes.
50% of all workflows recovered in 64 minutes.

Benchmark: 60 mins

Treat your default branch as the
lifeblood of your project

Getting to faster recovery times

Treat default branch as the lifeblood of your project

Set up instant alerts for failed builds (Slack, Pagerduty, etc.)
Write clear, informative error messages for your tests

SSH into the failed build machine to debug remote test env

Success rate

number of passing runs divided by the total number of runs over a
period of time

NOW O away...

.oriwill
fauntyou a
secondtime!

Success rate benchmark

90%+ success rate on default branches

Success rate: What the data shows

Benchmark: 90%+ on default

Throughput

average number of workflow runs that an organization completes on a
given project per day

\
“Look, in %ﬁlﬁr to maintain high velocity,
your pipelines must be optimized.”

Vit

It's only a model.

Throughput benchmark

Throughput benchmark
It depends.

Throughput: What the data shows

1.5 per day

Benchmark: at the speed of your business

Throughput is the most dependent on the other metrics

High-performing teams in 2023

4.0
minutes

3.7
minutes

3.3
minutes

10 minutes

729
minutes

/3.6
minutes

64.3
minutes

<60 minutes

Avg 78%
on default

Avg 77%
on default

Avg 77%
on default

Average >90% on
default

1.46 times
per day

1.43 times
per day

1.52 times
per day

As often as your
business requires -
not a function of your
tooling

The impact of Platform teams

Platform Teams, DevOps, and
YOU

No, DevOps is not dead

CNCF Cloud Native Landscape Overwhelmed? Please see the CNCF Trail Map. That and the interactive landscape are at |L.oncl.io

Database Streaming & Messaging Application Defirition & knage Build Continuous Integration & Defivery

;
;
: |
:
|

Scheduling & Orchestration Coardination & Service W"’“"“cpa’lfc"d”" Service Praxy

Discovery

Orchestration &
Ik 5 g ement

Runtme

Pravisianing

Certified

Kubernetes Certified Service Provider Kubemetes Training Partner CNFe

: |..,-g| R — |.....

The Rise of Platform Teams

Platform Perspective: Duration

ldentify and eliminate impediments to developer velocity

Set guardrails and enforce quality standards across projects
Standardize test suites & ClI configs (shareable configs / policies)
Welcome failed pipelines, i.e. fast failure

Actively monitor, streamline, & parallelize pipelines across the org

Platform Perspective: MTTR

Ephasise value of deploy-ready, default branches

Set up effective monitoring & alerting systems, track recovery time
Limit frequency & severity of broken builds w/ role-based policies
Config- and Infrastructure-as-Code tools limit misconfig potential
Actively monitor, streamline, & parallelize pipelines across the org

Platform Perspective: Success Rate

e With low success rates, look at MTTR & shorten recovery time first

e Set baseline success rate, aim for continuous improvement, look
for flaky tests or test coverage gaps

e Be mindful of patterns & influence of external factors, i.e. decline
on Fridays, holidays, etc.

Platform Perspective: Throughput

e Map goals to reality of internal & external business situations, i.e.
customer expectations, competitive landscape, codebase

complexity, etc.
e Capture a baseline, monitor for deviations
e Alleviate as much developer cognitive load from day-to-day work

2023 State of Software Delivery Report

For feedback and swag;:

circle.ci/jeremy

ash =
EEP timeline.jerdog.me
up

’ @IlAmJerdog

DEV @jerdog

In /in/jeremymeiss

m @jerdog@hachyderm.io

