
How to get started with 
Operators for Kubernetes

Max Körbächer



Max Körbächer

● Happy Kuberneting anno 2016
● Kubernetes Release Team since K8s v1.17
● Manager Cloud Native Engineering @ Storm Reply



The way of how Kubernetes works

Kubernetes is event driven

Source: Michael Gasch



Running simple, stateless deployments

Simple & Stateless?

● no long-run persistence needed
● can be shutdown “any time”
● can run multiple time without issues
● can run in different versions without 

issues

“There are two ways of constructing a 
software design: One way is to make it so 
simple that there are obviously no 
deficiencies, and the other way is to make 
it so complicated that there are no 
obvious deficiencies. The first method is 
far more difficult.” - C.A.R. Hoare



Running complex, stateful deployments

aka DON’T TOUCH!

● Need stable persistency
● Can’t deal well with 

unpredictable issues
● Long(er) startup time
● Not flexible in scheduling

What we are talking about?

● Databases
● Legacy migrations
● Architecture designs which can’t 

be event driven, stateless for 
some reasons

● Applications with many or heavy 
dependencies

Such applications in a dynamic environment like K8s causes additional 
operational effort for Day2 and later. 



Operators!

A Kubernetes Operator abstracts the 
deployment of diverse and state 
sensitive applications by including 
domain-specific knowledge.

● Lifecycle Management
● Configuration
● Updates
● Handle Failures

Operator are the result of translating 
operative knowledge, and 
developer-specific knowledge of an 
application into own software.

Operator utilize Custom Resource 
Definitions (CRD) to extend natively 
the K8s resources and APIs.

Long story short: software runs software

https://docs.google.com/a/redhat.com/document/d/13qHfdHwniZBaLpDClcGaWTk6kTbaU7j7hWQFj-a1cgY/edit?usp=drive_web


Capability Levels of Operator

5

Auto Pilot
Horizontal scaling, auto config 
tuning, anomaly detection, 
scheduling optimization

3

Full Lifecycle
App lifecycle (automated canary 
deployments, rollbacks by 
failure, and so on), storage 
lifecycle (backup, failure 
recovery)

1 Basic Install
Automated application 
provisioning and configuration 
management

4

Deep Insights
Metrics, alerts & log processing 

and workload analysis

2

Seamless Upgrades
Patch and minor release 

upgrades



How does an Operator work? - Control(ler)/-loop

Controllers act on core resources like deployments, 
statefulsets or service, but they also work with custom 
resources.

Controllers are implemented by a control loop:

1. Check state of resources, ideally by events
2. Change state of the object or ext. resource
3. Update status of the resource

Independent of the complexity of your controller, in the 
end you will do always these steps.

Important to note, but no time to go into depths: 
Informers, Work Queues & Events

Custom 
resource with a 
desired state

Controller

K8s or 
Ext. world

Reque after error

Adjust 
desired 

state

Notified about 
changes

Update status



CRDCRD

How does an Operator work? - Operator

Custom resource with a desired state
An operator sum up the operational knowledge of an SRE 
and their domain specific knowledge, to automate the 
common tasks.

A Custom Resource Definition (CRD) captures the domain 
knowledge, while a custom resource represents this on an 
instance.

Therefore a custom controller manages the custom 
resource by e.g. trigger a backup or start a new pod with a 
new software version.

CRD

Custom 
Resource

Custom 
Controller

Uses

Manages

Schema level
Instance level



Some options to get started
Custom resource with a desired state

KUDO Meta-
controller

Operator 
Framework/

SDK
Kubebuilder

Declarative/
Opinionated

Flexible/
Open

Or for the lazy 
people: 



Some options to get started
Custom resource with a desired state

KUDO Meta-
controller

Operator 
Framework/

SDK
Kubebuilder

Declarative/
Opinionated

Flexible/
Open

Or for the lazy 
people: 









Q&A


