
My tryst
with

Source Code Review

Anant Shrivastava
Information Security

Consultant

$whoami

$ Name : Anant Shrivastava
$ Work : Information Security Consultant
$ Work on : Web, Mobile, Linux
$ Project Leader :

* Android Tamer
* Codevigilant

$ Past life :
* System and server Administrator
* Developer (wp-filemanager >1L downloads)

Agenda

• My journey so far in world of bug finding via
code review.

• And Yes I bluffed its not just about code
review its also about associated
automation and simple yet relevant
techniques we used to identify all of that.

• Simplest form : idea is to showcase what
and how I have done stuff and how others
can also do it.

What not to expect

• Tools Release
• Highly Sophisticated Code
• Artificial Intelligence
• Discussion about SAST (Static

Application Security Testing)

Disclaimer

• No commercials Source code review
tools were harmed during the
exercise.

Lets Read

 With enough eyes all bugs are shallow
- Linus Torvalds

Let me re-write it

With enough expert eyes all bugs are
shallow

WHY

• Remember Last slide. Become “Expert
Eye”

• Wanted to Learn and Experiment new
stuff.

1yr back (2013) : Security Researcher
mainly Blackbox penetration tester and
tool’s author.

Why not Bug Bounties

• Invested time on Latest fad : Bugbounties
• Realized : mostly its about alert(‘XSS’)

and X-FRAME-OPTIONS or httpOnly for
most of them.

• Very few actually do something good.
• Surface area is pretty small and its

blackbox most of the time.
• Personal opinion and people may have

different opinion and its perfectly fine.

Bug Bounty efforts

What Next

• Lets try Code review
• But I don’t know code review
• So lets learn code review

• And off it goes into the ice box called
pending things to learn.

Parallel efforts

• I am not the only person thinking this, met
another fellow researcher “Prajal Kulkarni” who
was also planning on something similar and was
looking for collaboration

• We touched bases during #nullblr meet and off
we-started with the project.

What is codevigilant

• A community collaboration effort to
make opensource software’s secure.

• Finding bugs and responsibly
disclosing them to respective author
and preferable getting software
updated.

• Responsible disclosure on website
after sufficient interval

Target A EcoSystem

• We Picked WordPress Ecosystem which
meant
–WordPress Plugins (current focus)
–WordPress Themes (current Focus)
–WordPress Core (future check)

• Pick an ecosystem which you think is near
and dear to you and the language which
you can easily understand.

Lets Roll

• This is where things started to act funny.

• We started with
– Lets download top 10 and analyze one

by one.
– Ended up getting frustrated in couple of

days
–Mind you we were just two pentesters

fiddling around with source code.
Whitebox was not exactly our forte.

Lets Re-Roll

• Lets automate and improvise
– Download all plugins and Themes
– Focus on vulnerability type and not on

individual plugin

• Seems like a good plan : so lets roll

Lets count

Automate Please

• Quick WordPress information
extractor and downloader.

• Simple python script with grep / cut
friendly output.

Lazy Me

• Lets start with some easy stuff
• How about looking at direct /

unauthorized Access

Any tool available

• Inspathx works just fine but I never
got it to work for me.

• So wrote a simple python script.

Tool release

• Well I Lied let me release some tools
for you

• Error_finder release

https://github.com/Codevigilant/error_finder

Output
• Massive amount of Full Path Disclosure
• Few direct access issues

Full Path Disclosure

• WordPress stand of FPD is clear so no
point reporting it.

WordPress Ecosystem

• Lets step back and understand
ecosystem a bit more
–WordPress is a CMS
– Various User Roles
• Super Administrator
• Administrator
• Editor
• Author
• Contributor
• Subscriber

WordPress ecosystem

• Various plugin bind to various roles
• Issues without authentication are

prime concern.
• Issues affecting subscriber and

contributor hot 2nd.
• Editor and Admins have unescaped

HTML access

What Next

• With this understanding in place we
wanted to focus on unauthenticated
issues first.

• Lets start with A3-Cross Site
Scripting

XSS

• We thought its as simple as getting a
<script>alert(‘XSS’)</script> back

• Alas that should have been the case.

• How to find it via Source code review.
– Echo $_GET[‘input’];

• Grep “echo \$_GET” should work

Did we missed something

• How could we not miss obvious stuff

• Attempt 2
– Either build a lexical parser tokenize

whole source code or play intelligent
– Extract all GET/POST/REQUEST

parameters and access url with those
parameters in place.

A3 XSS cont’ed

• We did found massive amount on
entries and then realized we have
again screwed up.

• If Content type is text/html XSS
works

• But if content type is
– Json
– Xml
– Javascript

• XSS failed

Automated more

• Wrote another set of scripts which
gives proper response types also.

A9 - Known Vulnerable components

• We also focused on this issues
category and identified multiple
issues here also.

• Mainly those were concerned with
outdated SWF binaries used or old
library files used.

By-Product

• Error messages extracted via
inspathx code yielded to multiple
other issues like Directory traversal

End Result

• Although this was like a rookie
attempts to finding I don’t know what
I am finding but we ended up with
250 plus issues in various WordPress
plugins

• We Decided to call this Phase 1

Phase 1 Statistics

Phase 2

• So What’s next
• Authenticated issues
– SQL Injection
– Stored/Reflected Cross Site scripting in

Admin console
– CSRF
– And more

Phase 2 Hurdles

• We realized that authenticated flaws
are prioritized based on user access.

• We need to map all 30K Plugins with
each type of access.
– Script in progress to do exactly that.

Team Expansion

• Started with me and Prajal we are
now 4 people strong team
– Anant Shrivastava
– Prajal Kulkarni
– Chaitu
–Madhu Akula

What Next

• We are seeking for more volunteers
to come forward and help us make
opensource softwares a more secure
plateform.

What’s in this for audience
• Simple list of vulnerable functions in PHP you can

look for in your own codebases

File Tainted
file()
fopen()
popen()
file_get_contents()
fread()
fscanf()

Database tainted
mysql_fetch_array()
mysql_fetch_assoc()
mysql_fetch_field()
mysql_fetch_object()
mysql_fetch_row()

File Inclusion
include()
require()
require_once()
include_once()

Command Execution
exec()
shell_ exec()
system()
proc_open()

SQL Injection
mysql_query()
pg_query()

User Controls
$GLOBALS
$_SERVER
$_GET
$_POST
$_FILES
$_COOKIE
$_SESSION
$_REQUEST
$_ENV

Cross Site Scripting (XSS)
echo()
print()
printf()

What’s in this for audience

• Appeal to use codevigilant plateform
• You find flaws
– Either join our team and do continuous

contribution
• You get an author’s page at codevigilant
• If you get any bounty for the bug you keep it.

– Send details as one off cases of finding
• We will do co-ordination with third party
• We will try to get it patched or remove it from internet

if not patched.
• We will publish advisory on website with yours and

co-ordinator’s name in advisory.

What’s in this for audience

• If you want a open source product
tested contact us and we will see
what we can do about it.

• If you want quick test’s you can think
about donating to the project.

Simple Checklist
• Look for Obvious flaws in unauthenticated Code
– Reflected XSS
– SQL Injection
– Direct access / information disclosure
– Directory Traversal

• Understand Application Architecture
– Language specific checks
– List of language specific vulnerable functions
– List of User Roles with impact of confidentiality

• Attack Authenticated section
– Stored XSS
– CSRF
– XSPA
– SQL Injection
– Direct URL access

CodeVigilant

• http://www.codevigilant.com
• https://github.com/Codevigilant
• https://facebook.com/Codevigilant
• https://twitter.com/Codevigilant

Questions?

Why not automated
scanners

• They are either good at black or
whitebox.

• We wanted to confirm from both
sides.

• They have a workflow which should
be followed.

Open Source automation
Tools

• Tested rats and couple of other tools
only rips worked marginally good.

• But rips workflow demanded we
enter url in webview everytime and
web view keeps getting hanged from
time to time.

Commercial scanners

• No motivation to use them (we will
be processing result not learning
from it)

• No money to spend on them

• We did got one generous offer and
tried one product

Commercial scanner

• I don’t play name shame game
hence no names here.

• Commercial product was cloud
hosted app where we need to upload
code for review.

• Software missed simple XSS and SQLi
but so did open source tools also.

Why scanners missed

• WordPress or Other CMS have there
own functions to handle stuff

• Example
–Mysql query
–WordPress query

• These scanners don’t know about it
and failes to detect it.

Why scanners missed

• Or it could have been a simple case
of misconfiguration at our end.

• But after sharing results with Tool
Dev they kind of vanished and didn’t
responded back.

	Slide 1
	$whoami
	Agenda
	What not to expect
	Disclaimer
	Lets Read
	WHY
	Why not Bug Bounties
	Bug Bounty efforts
	What Next
	Parallel efforts
	Slide 12
	What is codevigilant
	Target A EcoSystem
	Lets Roll
	Lets Re-Roll
	Lets count
	Automate Please
	Slide 19
	Lazy Me
	Any tool available
	Tool release
	Output
	Full Path Disclosure
	WordPress Ecosystem
	WordPress ecosystem
	What Next
	XSS
	Did we missed something
	A3 XSS cont’ed
	Automated more
	A9 - Known Vulnerable components
	By-Product
	End Result
	Phase 1 Statistics
	Phase 2
	Phase 2 Hurdles
	Team Expansion
	What Next
	What’s in this for audience
	What’s in this for audience
	What’s in this for audience
	Simple Checklist
	CodeVigilant
	Questions?
	Why not automated scanners
	Open Source automation Tools
	Commercial scanners
	Commercial scanner
	Why scanners missed
	Why scanners missed

