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$whoami

$ Name : Anant Shrivastava
$ Work : Information Security Consultant
$ Work on : Web, Mobile, Linux
$ Project Leader : 

* Android Tamer
* Codevigilant

$ Past life :
* System and server Administrator
* Developer (wp-filemanager >1L downloads)



Agenda

• My journey so far in world of bug finding via 
code review.

• And Yes I bluffed its not just about code 
review its also about associated 
automation and simple yet relevant 
techniques we used to identify all of that.

• Simplest form : idea is to showcase what 
and how I have done stuff and how others 
can also do it.



What not to expect

• Tools Release
• Highly Sophisticated Code
• Artificial Intelligence
• Discussion about SAST (Static 

Application Security Testing)



Disclaimer

• No commercials Source code review 
tools were harmed during the 
exercise.



Lets Read

 With enough eyes all bugs are shallow
- Linus Torvalds

Let me re-write it

With enough expert eyes all bugs are 
shallow



WHY

• Remember Last slide. Become “Expert 
Eye”

• Wanted to Learn and Experiment new 
stuff.

1yr back (2013) : Security Researcher 
mainly Blackbox penetration tester and 
tool’s author.



Why not Bug Bounties

• Invested time on Latest fad : Bugbounties
• Realized : mostly its about alert(‘XSS’) 

and X-FRAME-OPTIONS or httpOnly for 
most of them. 

• Very few actually do something good. 
• Surface area is pretty small and its 

blackbox most of the time.
• Personal opinion and people may have 

different opinion and its perfectly fine.



Bug Bounty efforts



What Next

• Lets try Code review
• But I don’t know code review 
• So lets learn code review

• And off it goes into the ice box called 
pending things to learn.



Parallel efforts

• I am not the only person thinking this, met 
another fellow researcher “Prajal Kulkarni” who 
was also planning on something similar and was 
looking for collaboration

• We touched bases during #nullblr meet and off 
we-started with the project.





What is codevigilant

• A community collaboration effort to 
make opensource software’s secure.

• Finding bugs and responsibly 
disclosing them to respective author 
and preferable getting software 
updated.

• Responsible disclosure on website 
after sufficient interval



Target A EcoSystem

• We Picked WordPress Ecosystem which 
meant
–WordPress Plugins (current focus)
–WordPress Themes (current Focus)
–WordPress Core (future check)

• Pick an ecosystem which you think is near 
and dear to you and the language which 
you can easily understand.



Lets Roll

• This is where things started to act funny.

• We started with 
– Lets download top 10 and analyze one 

by one.
– Ended up getting frustrated in couple of 

days
–Mind you we were just two pentesters 

fiddling around with source code. 
Whitebox was not exactly our forte.



Lets Re-Roll

• Lets automate and improvise
– Download all plugins and Themes
– Focus on vulnerability type and not on 

individual plugin

• Seems like a good plan : so lets roll



Lets count



Automate Please

• Quick WordPress information 
extractor and downloader.

• Simple python script with grep / cut 
friendly output.





Lazy Me

• Lets start with some easy stuff
• How about looking at direct / 

unauthorized Access



Any tool available

• Inspathx works just fine but I never 
got it to work for me.

• So wrote a simple python script.



Tool release

• Well I Lied let me release some tools 
for you

• Error_finder release

https://github.com/Codevigilant/error_finder



Output
• Massive amount of Full Path Disclosure
• Few direct access issues



Full Path Disclosure

• WordPress stand of FPD is clear so no 
point reporting it.



WordPress Ecosystem

• Lets step back and understand 
ecosystem a bit more
–WordPress is a CMS
– Various User Roles
• Super Administrator
• Administrator
• Editor
• Author
• Contributor
• Subscriber



WordPress ecosystem

• Various plugin bind to various roles
• Issues without authentication are 

prime concern.
• Issues affecting subscriber and 

contributor hot 2nd.
• Editor and Admins have unescaped 

HTML access 



What Next

• With this understanding in place we 
wanted to focus on unauthenticated 
issues first.

• Lets start with A3-Cross Site  
Scripting



XSS

• We thought its as simple as getting a 
<script>alert(‘XSS’)</script> back

• Alas that should have been the case.

• How to find it via Source code review.
– Echo $_GET[‘input’];

• Grep “echo \$_GET” should work



Did we missed something

• How could we not miss obvious stuff

• Attempt 2
– Either build a lexical parser tokenize 

whole source code or play intelligent
– Extract all GET/POST/REQUEST 

parameters and access url with those 
parameters in place.



A3 XSS cont’ed

• We did found massive amount on 
entries and then realized we have 
again screwed up.

• If Content type is text/html XSS 
works

• But if content type is 
– Json
– Xml
– Javascript

• XSS failed



Automated more

• Wrote another set of scripts which 
gives proper response types also.



A9 - Known Vulnerable components

• We also focused on this issues 
category and identified multiple 
issues here also.

• Mainly those were concerned with 
outdated SWF binaries used or old 
library files used.



By-Product

• Error messages extracted via 
inspathx code yielded to multiple 
other issues like Directory traversal



End Result

• Although this was like a rookie 
attempts to finding I don’t know what 
I am finding but we ended up with 
250 plus issues in various WordPress 
plugins

• We Decided to call this Phase 1



Phase 1 Statistics



Phase 2

• So What’s next
• Authenticated issues
– SQL Injection
– Stored/Reflected Cross Site scripting in 

Admin console
– CSRF
– And more



Phase 2 Hurdles

• We realized that authenticated flaws 
are prioritized based on user access.

• We need to map all 30K Plugins with 
each type of access.
– Script in progress to do exactly that.



Team Expansion

• Started with me and Prajal we are 
now 4 people strong team
– Anant Shrivastava
– Prajal Kulkarni
– Chaitu
–Madhu Akula



What Next

• We are seeking for more volunteers 
to come forward and help us make 
opensource softwares a more secure 
plateform.



What’s in this for audience
• Simple  list of vulnerable functions in PHP you can 

look for in your own codebases

File Tainted
file()
fopen()
popen()
file_get_contents()
fread()
fscanf()

Database tainted
mysql_fetch_array()
mysql_fetch_assoc()
mysql_fetch_field()
mysql_fetch_object()
mysql_fetch_row()

File Inclusion
include()
require()
require_once()
include_once()

Command Execution
exec()
shell_ exec()
system()
proc_open()

SQL Injection
mysql_query()
pg_query()

User Controls
$GLOBALS
$_SERVER
$_GET
$_POST
$_FILES
$_COOKIE
$_SESSION
$_REQUEST
$_ENV

Cross Site Scripting (XSS)
echo()
print()
printf()



What’s in this for audience

• Appeal to use codevigilant plateform
• You find flaws
– Either join our team and do continuous 

contribution
• You get an author’s page at codevigilant
• If you get any bounty  for the bug you keep it.

– Send details as one off cases of finding
• We will do co-ordination with third party
• We will try to get it patched or remove it from internet 

if not patched.
• We will publish advisory on website with yours and 

co-ordinator’s name in advisory.



What’s in this for audience

• If you want a open source product 
tested contact us and we will see 
what we can do about it.

• If you want quick test’s you can think 
about donating to the project.



Simple Checklist
• Look for Obvious flaws in unauthenticated Code
– Reflected XSS
– SQL Injection
– Direct access / information disclosure
– Directory Traversal

• Understand Application Architecture
– Language specific checks
– List of language specific vulnerable functions
– List of User Roles with impact of confidentiality

• Attack Authenticated section
– Stored XSS
– CSRF
– XSPA
– SQL Injection
– Direct URL access



CodeVigilant

• http://www.codevigilant.com
• https://github.com/Codevigilant
• https://facebook.com/Codevigilant
• https://twitter.com/Codevigilant



Questions?



Why not automated 
scanners

• They are either good at black or 
whitebox.

• We wanted to confirm from both 
sides.

• They have a workflow which should 
be followed.



Open Source automation 
Tools

• Tested rats and couple of other tools 
only rips worked marginally good.

• But rips workflow demanded we 
enter url in webview everytime and 
web view keeps getting hanged from 
time to time.



Commercial scanners

• No motivation to use them (we will 
be processing result not learning 
from it)

• No money to spend on them

• We did got one generous offer and 
tried one product



Commercial scanner

• I don’t play name shame game 
hence no names here.

• Commercial product was cloud 
hosted app where we need to upload 
code for review.

• Software missed simple XSS and SQLi 
but so did open source tools also.



Why scanners missed

• WordPress or Other CMS have there 
own functions to handle stuff 

• Example
–Mysql query
–WordPress query

• These scanners don’t know about it 
and failes to detect it.



Why scanners missed

• Or it could have been a simple case 
of misconfiguration at our end. 

• But after sharing results with Tool 
Dev they kind of vanished and didn’t 
responded back.
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