
 Scott Gruber 
Los Angeles, November 2018

Using CSS Grid Today

History of Web Layouts

• Table
• Floats
• Flexbox
• CSS Grid

CSS Grid Layout shipped in
production browsers 2017.

CSS Grid Layout brings a two-
dimensional grid system to the Web.

Overview

• Grid terminology
• Grid display
• Creating the grid template
• Naming grid areas
• Placing grid items
• Implicit grid behavior
• Grid spacing and alignment

“A grid is an intersecting set of
horizontal and vertical lines”

Grid display: grid;

Grid Rows grid-template-rows
grid-row

Grid Columns grid-template-columns
grid-column

Grid Gap grid-gap

Grid Area grid-template-areas
grid-area

Grid Terminology

Creating a Grid Container

To make an element a grid container, set its display property
to grid.

All of its children automatically become grid items.
The markup

<div id="layout">
 <div id="one">One</div>
 <div id="two">Two</div>
 <div id="three">Three</div>
 <div id="four">Four</div>
 <div id="five">Five</div>
</div>

The styles
#layout {
 display: grid;
}

Defining Row and Column Tracks
grid-template-rows

grid-template-columns

• The value of grid-tempate-rows is a list of the heights of each
row track in the grid.

• The value of grid-template-columns is a list of the widths of
each column track in the grid.

#layout {
 display: grid;
 grid-template-rows: 100px 400px 100px;
 grid-template-columns: 200px 500px 200px;
}

• The number of sizes provided determines the number of rows/
columns in the grid. This grid in the example above has 3 rows and
3 columns.

Track Size Values

The CSS Grid spec provides a lot of ways to specify the width and
height of a track. Some of these ways allow tracks to adapt to
available space and/or to the content they contain:

• Lengths (such as px or em)
• Percentage values (%)
• Fractional units (fr)

• minmax()

• min-content, max-content
• auto

• fit-content()

Giving Names to Grid Areas
grid-template-areas

• grid-template-areas lets you assign names to areas in
the grid to make it easier to place items in that area later.

• The value is a list of names for every cell in the grid, listed by
row.

• When neighboring cells share a name, they form a grid area
with that name.

Fractional Units (fr)
The Grid-specific fractional unit (fr) expands and contracts
based on available space:

#layout {
 display: grid;
 grid-template-rows: 100px 400px 100px;
 grid-template-columns: 200px 1fr 200px;
}

Giving Names to Grid Areas (cont’d)
#layout {
 display: grid;
 grid-template-rows: [header-start] 100px [content-start] 400px [footer-
start] 100px;
 grid-template-columns: [ads] 200px [main] 1fr [links] 200px;
 grid-template-areas:
 "header header header"
 "ads main links"
 "footer footer footer"
}

Simple Page

HTML
<div class="grid">
 <header>Header</header>
 <nav>

 Home

 </nav>
 <article>
 <h1>Article</h1>
 <p>Content for my article would go here.</p>
 </article>
 <aside>Aside</aside>
 <section>Section</section>
 <footer>Footer</footer>
</div>

Simple Page

Placing items on a Grid
.grid {
 display: grid;
 grid-gap: 10px;
 grid-template-areas:
 "header"
 "nav"
 "article"
 "aside"
 "section"
 "footer";
}

header {
 grid-area: header;
}
nav {
 grid-area: nav;
}
article {
 grid-area: article;
}
aside {
 grid-area: aside;
}

footer {
 grid-area: footer;
}

Repeating Track Sizes

The shortcut repeat() function lets you repeat patterns in track
sizes:

repeat(#, track pattern)

The first number is the number of repetitions. The track sizes
after the comma provide the pattern:

BEFORE: 
grid-template-columns: 200px 20px 1fr 20px 1fr 20px 1fr 20px
1fr 20px 1fr 20px 1fr 200px;

AFTER:  
grid-template-columns: 200px repeat(5, 20px 1fr) 200px;

(Here repeat() is used in a longer sequence of track sizes.  
It repeats the track sizes 20px 1fr 5 times.)

Feature Queries

The @supports CSS at-rule lets you specify declarations that
depend on a browser's support for one or more specific CSS
features.

This is called a feature query.

Feature Queries

@supports (display: grid) {
 display: grid;
 grid-gap: 1em;
 grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
}

Bootstrap 12 column grid

Bootstrap 12 column grid

"Grid lets us move away from bootstrap 12 column grids"

“Grids can help you create
magazine layouts on the web”

“Don’t just choose a grid. Design it!”

–Nathan Ford 
founder of Gridset

“The Fonmon”

“The Gertsner”

“The Gertsner”

“The Carson”

Andy Clarke, Head of Creative at Stuff and Nonsense. Design consultant and mentor.
Author of “Art Direction for the Web”

@malarkey  
https://stuffandnonsense.co.uk

“Art direction and design helps your
audience feel something”

Cool CSS to explore in 2019

• Layout - CSS Grid and Flexbox

• Multi-column layout

• Floats as originally designed.

• CSS Shapes, Transforms and Animations

• Feature queries

Rachel Andrew
@rachelandrew 

https://rachelandrew.co.uk 
 Photo by Drew McLellan

Jen Simmons
Designer Advocate at Mozilla.

@jensimmons
https://www.layout.land

“If I can leave you with any advice, it is to
make room for time to play with new things.”

Thank you.
https://speaking.scottgruber.me

@scott_gruber

https://speaking.scottgruber.me

