
Xtreme
Android Exploitation

Lab
by

Anant Shrivastava
&

Anto Joseph

Introductions

Trainer (Anant Shrivastava)

• Information Security Consultant
• Admin - Dev - Security
• null + OWASP + G4H
• http://anantshri.info and @anantshri
• Speaker / Trainer : Blackhat, Nullcon, c0c0n, RuxCon, RootConf
• Regional Director NotSoSecure Global Services

Trainer Anto Joseph

Security Engineer @ Intel

DevOps / Security Guy

Speaker / Trainer : Blackhat ,Defcon,HITB,Troopers, AppSec
EU,x33fconf,HackInParis,Brucon,NullCon …

github.com/antojoseph

Enthusiastic about Mobile Security / IOT / Machine Learning

Quick Introductions
Three things

1. Your Name

2. Your Level of Experience / Comfort with Android

3. What is your expectation from the Session

Theory v/s Hands-On
We can either spend time doing theory about android or we can learn how things
work and can then use references to get theory side of it solid.

The entire lab is designed in a scenario based situation where we will perform the
same attacks that an attacker can do to gain access.

Workshop Setup
VirtualBox and Genymotion

2 VM’s provided by Trainers

Genymotion VM

Android Tamer (nullcon Edition)

How to Get Started
Import VM

Start Both VM

Credentials:

Username: android

Password: tamer

Check connectivity

ping google.com from within Android Tamer VM

ping tamer vm ip from within Android VM

Day 1

Understand android application code.
OWASP Top 10 Mobile Risk
How to Decompile android application

1. How to handling obfuscated code
2. How Dalvik Works

Traffic interception of android applications
1. How to handle SSL protections (cert validation, SSL Pinning)
2. How to intercept non HTTP Traffic

Defeating Root detection
HTML5 Application analysis
Static analysis of application

Course

Assumptions
Aware of Android SDK or basic components of SDK (adb, fastboot)

Layman's View of Android

Aware of using Linux Command line and Scripting

In case you are stuck in one of these feel free to google first.

If in doubt ask one of the trainers.

OWASP Top 10 Risk - 2014
M1: Weak Server Side Controls
M2: Insecure Data Storage
M3: Insufficient Transport Layer Protection
M4: Unintended Data Leakage
M5: Poor Authorization and Authentication
M6: Broken Cryptography

M7: Client Side Injection
M8: Security Decisions Via Untrusted Inputs
M9: Improper Session Handling
M10: Lack of Binary Protections

Top 10 Risk - 2016

Candidate release list is publically available

Expect a large amount of changes on it.

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

Is this course OWASP Top 10 focused
In Short NO

This course is designed to be as realistic as possible based on real world
problems that everyone in infosec community faces when it comes to android.

• Decompilation
• Traffic interception
• Root Detection
• HTML5 Application
• static and dynamic analysis
• manual and automated analysis
• bug hunting in core android

Understanding Application Code
APK (Android Package)

modified Java code

Can be decompiled to

• Java (easy to read but may not be accurate all time)

• Smali (bytecode representation)

Challenge : Decompile Applications
APK ~ JAR ~ ZIP
unzip APK it contains

classes.dex
resources
XML’s (encrypted)

classes.dex -> Java classes combined together
decompile using dex2jar or enjarify

resources : images etc
no need to decompile

XML’s : binary version to save processing time
apktool : to decode XML to human readable format

How to Decompile Applications
All tools present on AndroidTamer

apk2java is custom script which performs decompilation

decrypts all XML files

gives java as well as smali code

gives java code decompiled via 2 different decompiler (jad and jadx)

android@tamer ~ $ apk2java package.apk

Retrieve APK For Device
android@tamer ~ $ adb shell pm list packages -f

android@tamer ~ $ adb shell pm path <packageName>

android@tamer ~ $ adb pull <package_path> ./

Now follow previous steps.

Exercise 1
Retrieve the application challenge1 from Android VM and then perform

decompile operation.

Things to Understand
Challenge 1 Source code available inside Android-Studio

Very accurate retrieval of source code.

Accuracy ~ complexity

Challenge2
1. Decompile XYZ.apk and identify the key

How to read Obfuscated Code
1 . Cool example on how to not do Obfuscation : http://obfuscat.ion.land/

Usual Techniques :

1 . Control Flow

2. String Encryption

3. Class - renaming

4 .Method -renaming

5. Java Reflection to hide method calling

Understanding Obfuscated Code
Tools Available

1. Simplify (generic de-obfuscation)
2. JEB - (Modules)
3. eg : https://gist.github.com/AKosterin/af8c2dd2aa372c99b507

How obfuscation works
Useless arithmetic
class-renaming
Infinite loops
control flow obfuscation
String encryption
Method Daisy Chaining / Class Daisy Chaining

Challenge : Obfuscated Code
Try out the challenge and try to crack it !

Failures
decompile fails/can’t be understood coz its obfuscated
So how do we defeat obfuscation

How Dalvik / ART VM
Register Based
Bytecode is different from a standard JVM
dex = device independent code
odex /oat = optimised for your device
DALVIK : Use dexopt to optimized dex files
stored in dalvik-cache
System apps usually ship as odex / OAT files
ART : No More JIT
ART : Oat2dex converter to decrypt Lollipop apps and Jars

Why obfuscate?
Good to have feature

defers application analysis.

should not be considered a replacement for best practices. ugly code / logic /
human error behind obfuscation is still applicable.

Challenge : Traffic interception
Often Applications will have some kind of traffic going over internet.

As part of assessment we need to be able to see this traffic.

Proxy Configuration: Demo
How to configure burp, charles, ZAP etc for proxy interception

Start proxy in Tamer (note ip and port)

Set proxy in wifi settings on Device

Check traffic interception via http traffic via browser

Exercise 3
Intercept traffic of OKVolleyHTTPSample

Challenge
Try GET HTTPS section

PKI is broken
1. System Trust all CA in Trust Store (PortSwigger CA)

2. System Trust's ROOT CA not certification chain

3. Any CA can issue certificate to any website (Diginotar, Trustwave, NIC and
many more)

4. Certificate Stolen: Welcome to Revocation hell and CRL Nightmare

5. OCSP to the rescue over port 80

6. many more read: https://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf

Break Protection
1. Extract ROOT CA from your proxy software

2. Import ROOT CA into android via commandline or browser

android@tamer ~ $ adb push rootca.pem /mnt/sdcard/Downloads/

Exercise 4
intercept https traffic

Challenge: Cert Pinning
Advanced form of HTTPS where certificate is validated not via OS trust store but
via its own checks.

How it works
1. Identify Which certificate you want to pin.

2. Generate Sha1 / md5 sum of the certificate

3. Hardcode the cert pin inside your application

a. use default platform code

b. use a framework

c. use custom self written code

Detailed Readings
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

http://www.slideshare.net/anantshri/ssl-pinning-and-bypasses-android-and-ios

Ways to defeat it
1. APK Decompile and modify code

Excellent example: http://blog.dewhurstsecurity.com/2015/11/10/mobile-security-
certificate-pining.html

2. Xposed Module

What is Xposed module and how they work i will leave for Day2.
1. Root your device

2. Install Xposed Framework

3. Install JustTrustMe module

4. Enable JustTrustMe

5. Reboot

Exercise 5
Decrypt traffic for CERT PINNING Action

Challenge : Root detection
• To ensure that device is secure and any data on it can be assumed to be

secure.

• No one is tampering with application / traffic

• and many more reasons

For Pentesters

Big Headache coz pentest tool works on rooted devices where the application
may not work

How it works
Mainly Blacklist

Detect binary presence (/usr/bin/su)

Detect commands (which)

Detect superuser controller (superuser.apk)

Good coverage : https://www.blackhat.com/docs/eu-15/materials/eu-15-
Benameur-All-Your-Root-Checks-Are-Belong-To-Us-The-Sad-State-Of-Root-
Detection.pdf

How to defeat it
Hide binaries

Overload system calls to check for the binaries

Exercise
Bypass Root Checks on Root Inspector

HTML5
Used for hybrid Cross platform applications

Easy to build using HTML / CSS / JS

Common HTML5 issues
Source code disclosure

Javascript issues mainly Cross Site Scripting (DOM XSS)

SSL Configuration

Local Storage and caching data leakage

Framework specific issue (phonegap, titanium etc)

Easy to repackage

How to Find Issues
Decompile Application

HTML5 source code will be in assets/www folder

For in device storage application will use localstorage (refer /data/data/<app>)

Exercise
Analyze TripCase Application and see if any data is leaked

Challenge : Static Analysis
Identify flaws without running application

requires deeper understanding of code

however task made more simpler with opensource code scanners

How to Scan
AndroidTamer

Mobilizer

droidscan.sh

Challenge
c0c0n Application : Get the Key

Note: we want you to decompile change code and recompile

How to decompile and recompile via smali
Decompile

android@tamer ~ $ apktool d <apk>

Re-compile

android@tamer ~ $ apktool b <folder>

Is that all

android@tamer ~ $ keytool -genkey -v -keystore my-release-key.keystore -
alias alias_name -keyalg RSA -keysize 2048 -validity 10000

android@tamer ~ $ jarsigner -verbose -sigalg SHA1withRSA -
digestalg SHA1 -keystore my-release-key.keystore coc.on-1.apk
alias_name

Day 2

Outline of the day

Manual and Automated dynamic analysis
Application hooking and dynamic instrumentation with writing your own

module
Fuzzing Android (core and applications)
CTF challenge to be solved based on learnings during class. (expected

to write a code or use proper tools)

Dynamic analysis
Runtime Analysis of application

Gives out accurate runtime status of the application

Tools to be used: Manual
adb

ddms androidmonitor

pidcat

Things to look
/data/data/<app>

/sdcard/

/sdcard1/

Exercise
Perform manual dynamic analysis and identify flaws in base CRM

Automated Analysis
Let the automaton take over

We can perform most of these checks dynamically

Multiple Frameworks in W.I.P. Status

• MobSF (Ajin)
• Marvin
• cuckoo-droid
• drozer
• Qark

How to
Configure MobSF

Download and setup VM

Start MobSF

Run MobSF

provide an application

Analyze

Exercise
Dynamically analyze CrackMe’s

Hooking and Dynamic instrumentation
No Recompilation

Runtime behaviour modification

Ref: http://www.slideshare.net/AbhinavChourasiaGMOB/null-xposedinternals

Demo + Exercise
Lets write a module for Xposed

Frida
It’s a dynamic code instrumentation toolkit.

Inject snippets of JavaScript into native apps on Windows, Mac, Linux, iOS and
Android.

API Bindings for Python, node-js

navigate to : https://github.com/antojoseph/frida-android-hooks

Other instrumentation framework
Frida : Hands On

Root Detection Bypass

Debugger Check Bypass

WebView Logging

Device Id Spoofing

Certificate Pinning Bypass

Login Screen bruteforce

Identify more issues
Identify issues in Core of android

Issues beyond what’s found via tools

Introducing Fuzzing

Fuzzzzzzzzzzzzzzz
What is Fuzzing

How fuzzing works

More Fuzzing Applications
How and what

intent fuzzing

c binary fuzzing

and more

Challenge: Finding flaws in Core
How to find next stagefright

Core Fuzzing Setup
Software and tools required

Paid and free alternatives (lets prefer free here)

Setup
How it works

Exercise
Generate dataset

Run Dataset against target

write the glue script

write the log collection script

What we learned : A recap
How does an Android Application Looks like
How to decompile android application
How to Intercept traffic of an android application (http/ssl/non-http)
How to analyze html5 Applications
Manual Analysis (static and dynamic) of android application
Automated Analysis (Static and Dynamic)
Dynamic Instrumentation of Code using Xposed and Frida
Fuzzing of Android Code Via DroidFuzzzer

How much of OWASP top 10 we covered
M1: Weak Server Side Controls (Attend XWH for this)
M2: Insecure Data Storage
M3: Insufficient Transport Layer Protection
M4: Unintended Data Leakage
M5: Poor Authorization and Authentication
M6: Broken Cryptography
M7: Client Side Injection
M8: Security Decisions Via Untrusted Inputs
M9: Improper Session Handling
M10: Lack of Binary Protections

CTF Challenge

Challenge solutions can be submitted here or after session over email to
anant@anantshri.info and cc: antojoseph007@gmail.com

Thank You

