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Hi, I’m Kelly
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“Chaos isn’t a pit. Chaos is a ladder.” 

― Petyr Baelish, Game of Thrones
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Infosec has a choice: marry DevOps 
or be rendered impotent & irrelevant
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Infosec won’t survive in a silo. It must 
be embedded in software delivery.
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DevOps can learn to carve its own 
path to secure software delivery
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How can controlling chaos create a 
marriage of infosec and DevOps?
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1. Chaos Theory

2. Time to D.I.E.

3. A Phoenix Rises
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Chaos Theory
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Chaos engineering = continual 
experimentation to test resilience
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“Things will fail” naturally extends 
into “things will be pwned”
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Security failure is when security 
controls don’t operate as intended
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What are the principles of chaotic 
security engineering?
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1. Expect that security controls will 
fail & prepare accordingly
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2. Don’t try to avoid incidents – hone 
your ability to respond to them
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Game days: like planned firedrills
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Prioritize security game days based 
on potential business impacts
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Decision trees: start at target asset, 
work back to easiest attacker paths
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Determine the attacker’s least-cost 
path (hint: it doesn’t involve 0day)
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Your goal is to raise the cost of 
attack, ideally beginning at design
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Time to D.I.E.
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We need a model promoting qualities
that make systems more secure
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Enter the D.I.E. model by Sounil Yu: 
Distributed, Immutable, Ephemeral
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Distributed: multiple systems 
supporting the same overarching goal
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Distributed infrastructure reduces 
risk of DoS attacks by design
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A service mesh is like an on-demand 
VPN at the application level

26



@swagitda_

Attackers are forced to escalate 
privileges to access the iptables layer 
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Immutable: infrastructure that 
doesn’t change after it’s deployed
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Immutable infra is more secure by 
design – ban shell access entirely
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Patching is no longer a nightmare 
with version-controlled images
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Ephemeral: infrastructure with a very 
short lifespan (dies after a task)
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Ephemerality creates uncertainty for 
attackers (persistence = nightmare)
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Installing a rootkit on a resource that 
dies in minutes is a waste of effort
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Optimizing for D.I.E. reduces risk by 
design & supports resilience
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A Phoenix Rises
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Begin with “dumb” testing before 
moving to “fancy” testing
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D.I.E.ing is an art, like everything else
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Controlling Chaos: Distributed
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Distributed is mostly covered by the 
existing repertoire of chaos eng tools
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Repurpose these tools, but make 
attackers the source of failure
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Multi-region services present a fun 
opportunity to mess with attackers
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Shuffle IP blocks regularly to change 
attackers’ lateral movement game
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Test: inject failure into your service 
mesh to test authentication controls
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Controlling Chaos: Immutable
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Immutable infra is like a phoenix – it 
disappears & comes back a lot
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Volatile environments with continually 
moving parts raise the cost of attack

46



@swagitda_

Create rules like, “If there’s ever a 
write to disk, crash the node”
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Attackers must stay in-memory, 
which hopefully makes them cry
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Bonus: disallowing all local IO 
improves service reliability
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Metasploit Meterpreter + webshell:
Touch passwords.txt & kaboom
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Build your Docker images with a 
garbage-filled “bamboozle layer”
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Mark garbage files as “unreadable” to 
craft enticing bait for attackers
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A potential goal: architect 
immutability turtles all the way down
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Test: inject attempts at writing to 
disk to ensure detection & reversion
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Treat changes to disk by adversaries 
similarly to failing disks: mercy kill
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Controlling Chaos: Ephemeral
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Most infosec bugs are stated-related 
– get rid of state, get rid of bugs
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Reverse uptime: longer host uptime 
adds greater security risk
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Test: change API tokens & test if 
services still accept old tokens
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Test: retrograde libraries, containers, 
other resources in CI/CD pipelines
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Test: inject hashes of old pieces of 
data to ensure no data persistence
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Leverage lessons from toll fraud –
cloud billing becomes security signal
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Test: exfil TBs or run a cryptominer
to inform billing spike detection
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Conclusion
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Chaos/resilience are natural homes 
for infosec & represent its future.
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The future of infosec involves unified 
responsibility & accountability.
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Security can be innovative and fuel 
the engine of business as well.

67



@swagitda_

“You must have chaos within you to 
give birth to a dancing star.” 

― Friedrich Nietzsche
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