
CONTROLLED CHAOS
The Inevitable Marriage of 
DevOps & Security

Kelly Shortridge (@swagitda_) Velocity Berlin 2019



@swagitda_

Hi, I’m Kelly

2



@swagitda_

“Chaos isn’t a pit. Chaos is a ladder.” 

― Petyr Baelish, Game of Thrones

3



@swagitda_

Infosec has a choice: marry DevOps 
or be rendered impotent & irrelevant

4



@swagitda_

Infosec won’t survive in a silo. It must 
be embedded in software delivery.

5



@swagitda_

DevOps can learn to carve its own 
path to secure software delivery



@swagitda_

How can controlling chaos create a 
marriage of infosec and DevOps?

7



@swagitda_

1. Chaos Theory

2. Time to D.I.E.

3. A Phoenix Rises

8



Chaos Theory



@swagitda_

Chaos engineering = continual 
experimentation to test resilience



@swagitda_

“Things will fail” naturally extends 
into “things will be pwned”

11



@swagitda_

Security failure is when security 
controls don’t operate as intended

12



@swagitda_

What are the principles of chaotic 
security engineering?

13



@swagitda_

1. Expect that security controls will 
fail & prepare accordingly

14



@swagitda_

2. Don’t try to avoid incidents – hone 
your ability to respond to them

15



@swagitda_

Game days: like planned firedrills

16



@swagitda_

Prioritize security game days based 
on potential business impacts

17



@swagitda_

Decision trees: start at target asset, 
work back to easiest attacker paths

18



@swagitda_

Determine the attacker’s least-cost 
path (hint: it doesn’t involve 0day)

19



@swagitda_

Your goal is to raise the cost of 
attack, ideally beginning at design

20



Time to D.I.E.



@swagitda_

We need a model promoting qualities
that make systems more secure

22



@swagitda_

Enter the D.I.E. model by Sounil Yu: 
Distributed, Immutable, Ephemeral

23



@swagitda_

Distributed: multiple systems 
supporting the same overarching goal

24



@swagitda_

Distributed infrastructure reduces 
risk of DoS attacks by design

25



@swagitda_

A service mesh is like an on-demand 
VPN at the application level

26



@swagitda_

Attackers are forced to escalate 
privileges to access the iptables layer 

27



@swagitda_

Immutable: infrastructure that 
doesn’t change after it’s deployed

28



@swagitda_

Immutable infra is more secure by 
design – ban shell access entirely

29



@swagitda_

Patching is no longer a nightmare 
with version-controlled images



@swagitda_

Ephemeral: infrastructure with a very 
short lifespan (dies after a task)

31



@swagitda_

Ephemerality creates uncertainty for 
attackers (persistence = nightmare)

32



@swagitda_

Installing a rootkit on a resource that 
dies in minutes is a waste of effort

33



@swagitda_

Optimizing for D.I.E. reduces risk by 
design & supports resilience

34



A Phoenix Rises



@swagitda_

Begin with “dumb” testing before 
moving to “fancy” testing

36



@swagitda_

D.I.E.ing is an art, like everything else



@swagitda_

Controlling Chaos: Distributed

38



@swagitda_

Distributed is mostly covered by the 
existing repertoire of chaos eng tools

39



@swagitda_

Repurpose these tools, but make 
attackers the source of failure

40



@swagitda_

Multi-region services present a fun 
opportunity to mess with attackers

41



@swagitda_

Shuffle IP blocks regularly to change 
attackers’ lateral movement game

42



@swagitda_

Test: inject failure into your service 
mesh to test authentication controls

43



@swagitda_

Controlling Chaos: Immutable

44



@swagitda_

Immutable infra is like a phoenix – it 
disappears & comes back a lot

45



@swagitda_

Volatile environments with continually 
moving parts raise the cost of attack

46



@swagitda_

Create rules like, “If there’s ever a 
write to disk, crash the node”

47



@swagitda_

Attackers must stay in-memory, 
which hopefully makes them cry

48



@swagitda_

Bonus: disallowing all local IO 
improves service reliability

49



@swagitda_

Metasploit Meterpreter + webshell:
Touch passwords.txt & kaboom

50



@swagitda_

Build your Docker images with a 
garbage-filled “bamboozle layer”

51



@swagitda_

Mark garbage files as “unreadable” to 
craft enticing bait for attackers

52



@swagitda_

A potential goal: architect 
immutability turtles all the way down

53



@swagitda_

Test: inject attempts at writing to 
disk to ensure detection & reversion

54



@swagitda_

Treat changes to disk by adversaries 
similarly to failing disks: mercy kill

55



@swagitda_

Controlling Chaos: Ephemeral

56



@swagitda_

Most infosec bugs are stated-related 
– get rid of state, get rid of bugs

57



@swagitda_

Reverse uptime: longer host uptime 
adds greater security risk

58



@swagitda_

Test: change API tokens & test if 
services still accept old tokens

59



@swagitda_

Test: retrograde libraries, containers, 
other resources in CI/CD pipelines

60



@swagitda_

Test: inject hashes of old pieces of 
data to ensure no data persistence

61



@swagitda_

Leverage lessons from toll fraud –
cloud billing becomes security signal

62



@swagitda_

Test: exfil TBs or run a cryptominer
to inform billing spike detection

63



Conclusion



@swagitda_

Chaos/resilience are natural homes 
for infosec & represent its future.

65



@swagitda_

The future of infosec involves unified 
responsibility & accountability.

66



@swagitda_

Security can be innovative and fuel 
the engine of business as well.

67



@swagitda_

“You must have chaos within you to 
give birth to a dancing star.” 

― Friedrich Nietzsche

68



@swagitda_

@swagitda_

/in/kellyshortridge

kelly@greywire.net

69


