
The three layers of testing

@bartwaardenburg



“We want to deliver high quality 
applications for our users while regularly 

releasing new features”







00 Static analysis



Static analysis



“Static analysis is the analysis of 
software that is performed without 

actually executing programs”



“Using Flow or TypeScript could have 
prevented 15% of the public bugs for 

public projects on GitHub”

http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf



type MyCustomButtonProps = { text: string };

const MyCustomButton = ({ text }: MyCustomButtonProps) => (
<button>{text}</button>

);

const ButtonContainer = () => (
<MyCustomButton text={['I', 'like', 'turtles']} />

);





“You can have every single variable and 
function completely typed and linted but still 
have none of your functions doing what they 

should be doing”



const a: number = 1;
const b: number = 2;

const multiply = (a: number, b: number): number => a + b;

multiply(a, b);



01

00 Static analysis

Unit testing



Unit testing



“A unit test is a way of testing a unit - the 
smallest piece of code that can be logically 

isolated in a system”



const multiply = (a: number, b: number): number => a + b;

test('Multiply should return the arguments multiplied', () => {
expect(multiply(4, 3)).toBe(12);

)};



expect(received).toBe(expected)

Expected value to be (using ===):
12

Received:
7



“A snapshot test verifies that a piece of 
functionality works the same as it did when 

the snapshot was created”



const Button = ({ type }: ButtonProps) => (
<button className={`btn-${type}`} />

);

test('The Button component renders correctly', () => {
const component = renderer.create(
<Button type=”good" />

).toJSON();

expect(component).toMatchSnapshot();
});



PASS src/unit-test.spec.js
✓ The Button component renders correctly (11ms)



FAIL src/unit-test.spec.js
✕ The Button component renders correctly (15ms)

● The Button component renders correctly

expect(value).toMatchSnapshot()

Received value does not match stored snapshot 1.

- Snapshot
+ Received

<button
- className="btn-good"
+ className="btn-bad"

/>



“You can have every single component and 
function unit test passing but still have none 
of your functions working together like they 

should”



const multiply = (a: number, b: number): number => a * b;

const alertNumber = (value: number): void => alert(value);

const ButtonWhichShouldAlertOnClick = () => (
<button
onClick={() => multiply(1, 2)}
onMouseEnter={() => alertNumber(multiply(1, 2))}

>
Multiply

</button>
);



01

02

00 Static analysis

Unit testing

Integration testing



Integration testing



“Integration testing is the phase in software 
testing in which individual software modules 

are combined and tested as a group”



import { mount } from 'enzyme';

const ButtonWhichShouldAlertOnClick = () => (
<button

onClick={() => multiply(1, 2)}
onMouseEnter={() => alertNumber(multiply(1, 2))}

>
Multiply

</button>
);

alertNumber = jest.fn();

test('The Button component should run a function on click', () => {
const component = mount(<Button type="test" />);

component.find('button').simulate('click');

expect(alertNumber).toHaveBeenCalledTimes(1);
});



FAIL src/integration-test.spec.js
✕ The Button component should run a function on click (22ms)

● The Button component should run a function on click

expect(jest.fn()).toHaveBeenCalledTimes(1)

Expected mock function to have been called one time, but it was called 
zero times.



“You can have everything working together 
completely as intended but still have an 

empty screen for an application”



const multiply = (a: number, b: number): number => a * b;

const alertNumber = (value: number): void => alert(value);

const Button = () => (
<button
onClick={() => alertNumber(multiply(1, 2))}

>Multiply</button>
);

document.querySelector(‘body').style.cssText = 'display: none';



01

02

03

00 Static analysis

Unit testing

Integration testing

User interface testing



User interface testing



“User interface testing is the process of 
testing a product's graphical user interface to 

ensure it meets its specifications”



tools

• Protractor
• Cypress
• Puppeteer
• Codecept
• Navalia
• Chromeless

• Selenium
• Nightmare
• Nightwatch
• TestCafe
• CasperJS
• TestCafe



import {Chrome} from 'navalia';
import {toMatchImageSnapshot} from 'jest-image-snapshot';

expect.extend({toMatchImageSnapshot});

const chrome = new Chrome();

test('The routing input component should display as expected', async () => {
await chrome.goto('https://www.anwb.nl/verkeer/routeplanner');
await chrome.wait('.ROVE-routing-input');
const screenshot = await chrome.screenshot('.ROVE-routing-input');
await chrome.done();

expect(screenshot).toMatchImageSnapshot();
});





PASS src/components/routing-input-address/tests/RoutingInputAddress.ui-
test.js (7.153s)
✓ The routing input component should display as expected (3671ms)





FAIL src/components/routing-input/tests/RoutingInput.ui-test.js (9.909s)
✕ The routing input component should display as expected (9033ms)

● The routing input component should display as expected

Expected image to match or be a close match to snapshot.
See diff for details:

/Users/p279825/Sites/ANWB/traffic/src/components/routing-
input/tests/__image_snapshots__/__diff_output__/routing-input-ui-test-js-
the-routing-input-component-should-display-as-expected-1-diff.png





import {Chromeless} from 'chromeless';

const chromeless = new Chromeless();

const screenshot = await chromeless
.goto('https://www-ontw.anwb.nl/verkeer/routeplanner')
.screenshot('#routing', {
base64: true,

});

const file = new Buffer(screenshot, 'base64');

expect(file).toMatchImageSnapshot();

await chromeless.end();





const chromeless = new Chromeless({
remote: {

endpointUrl: 'https://XXXXXXXXXX.execute-api.eu-west-1.amazonaws.com/dev’,
apiKey: 'your-api-key-here’,

},
});



“With chromeless you can run hundreds of 
browsers in parallel”



“You can easily execute > 100.000 tests for 
free in the free tier”



01

02

03

00 Static analysis

Unit testing

Integration testing

User interface testing



thanks & happy testing

@bartwaardenburg


