
Fighting chaos in a monorepo
Monorepo is a good servant, but a bad master

Jakub Beneš
Engineering Manager @ Productboard

@jukben@jukben https://jukben.codes

https://jukben.codes

Agenda

• What is monorepo

• What problems we faced at Productboard

• What strategies we have deployed

• Takeaways

What’s monorepo

Why and why not?

• Better visibility and collaboration across teams

• Simplified dependency management

• Easier large scale refactoring

• Build pipelines

• VSC Tooling Challenges

• Limitations Around Access Control

Pros Cons

Throwback

85%

bigger

Throwback

CI/CD Pipeline

Tooling is our friend

• We have conducted research for tooling which would help us to maintain
the monorepo better.

• Manage a complex dependency graph

• Build only affected projects

• Provide API scaffold code

Tooling is our friend

Nx proven to be right choice
• We started to break down our monolith into smaller chunks (Nx projects)

• Possibility to run them separately (eslint, jest, build, deployment)

• Isolation

• Ownership

https://medium.com/productboard-engineering/

Adoption

🚀

This is what we have got...

Benefit no. 1: Context Aware Pipeline

• By using nx affected we were
able to run only that code that
changed or was affected by
dependency graph

• Nx has also support for distributed
caching across all environments

Benefit no. 1: Context Aware Pipeline

Benefit no. 1: Context Aware Pipeline

75%

faster

Benefit no. 2: Consistence and ownership

• Every lib is generated with sane
default values and configuration

• By default we push author to make
entry into CODEOWNER file

Benefit no. 3: Migration framework

• Nx has support of "generators" to
scaffold tests, components and file
structure in general

• Comes with opinionated
structure but it's extensible

https://medium.com/productboard-engineering/

Cherry on the top: Observability

• Together with CODEOWNERS we
are able to map Nx projects to
ESlint issues, test coverage and
more.

Next, what else do we have...

Danger.js

• Danger runs during your CI
process, and gives teams
the chance to automate
common code review
chores.

• Make robots do chores! 🤖

Kodiak

• Trunk based development

• Integration on feature branch

• Make robots do chores! 🤖
https://github.com/chdsbd/kodiak

Github Annotations

Developers like to ignore CI outputs, bring it closer....

Bundle Size

• Stay on top of bundle size

• Bundle size budgets

• Warn you in case you bundle
something huge

Takeaways

• Monorepos are not easy – at some scale you need dedicated team for it

• If the setup is right, it speeds up things – especially if your codebase is
interconnected. Tooling has great impact. Nx proven to be great for our
use case.

• You don't need to be FAANG to have a swag.

Thank you!

Q&A
• https://nx.dev

• Scaling monorepo — to infinity and
beyond!

• How we measure adoption of a design
system at Productboard

• https://danger.systems/js/

• https://github.com/chdsbd/kodiak

Jakub Beneš
Engineering Manager @ Productboard

@jukben

@jukben

https://jukben.codes

https://nx.dev
https://medium.com/productboard-engineering/scaling-monorepo-to-infinity-and-beyond-79bed3d302b2
https://medium.com/productboard-engineering/scaling-monorepo-to-infinity-and-beyond-79bed3d302b2
https://medium.com/productboard-engineering/how-we-measure-adoption-of-a-design-system-at-productboard-aa17a759e54
https://medium.com/productboard-engineering/how-we-measure-adoption-of-a-design-system-at-productboard-aa17a759e54
https://danger.systems/js/
https://github.com/chdsbd/kodiak
https://jukben.codes

