
© 2020 Ververica

Marta Paes (@morsapaes)

Developer Advocate

Introduction to Stream Processing

With Apache Flink

© 2020 Ververica

Marta Paes (@morsapaes)

Developer Advocate

Introduction to Stream Processing

With Apache Flink

Data Analyst

Data Scientist

Data Engineer

@morsapaes3

About Ververica

Original Creators of
 Apache Flink®

Enterprise Stream Processing
With Ververica Platform

Part of
Alibaba Group

@morsapaes4

Analytics...Not that Long Ago

OLTP Database(s)

Data Warehouse (DWH)

ETL

FTP Servers

...

Data Lake

@morsapaes5

Analytics...Not that Long Ago

Long, nightly jobs

Someone waking up

Re-run long, nightly job

Someone complaining

Results

OLTP Databases

Data Warehouse (DWH)

FTP Servers

...

• Most source data is continuously produced

• Most logic is not changing that frequently

The quest for data...

But in the end...

• Not everyone can wait for yesterday’s data

x
Data Lake

ETL

@morsapaes

Everything is a Stream

@morsapaes7

Everything is a Stream

Your static data records become events that are continuously produced and should be continuously processed.

Log / Stream Storage

Kafka, Kinesis, Pulsar, ... Sinks
K/V Store, Database,
Log, Application, ...

Long-term Storage

S3, HDFS, ...

Event Sources
Applications, Sensors,
Databases, Devices, ...

...

Stream
Processing

Stream
Processing

Stream
Processing

...

@morsapaes8

Stream Processing

Your
Code

one-at-a-time
event processing

...

Continuous processing of unbounded streams of events, one-at-a-time.

@morsapaes9

Stateful Stream Processing

Your
Code

one-at-a-time
event processing

...

State

What if this simple model could “remember” events as they flow through?

Also your biggest challenge

Your most valuable asset

@morsapaes

So...what is Apache Flink?

@morsapaes11

What is Apache Flink?

Flink is an open source framework and distributed engine for stateful stream processing.

Stateful Computations over Data Streams

● State management is what makes Flink powerful.

● Consistent, one-at-a-time event processing is what makes Flink flexible.

Flink Runtime
Stateful Computations over Data Streams

Learn more: flink.apache.org

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes12

Stateful Computations over Data Streams

Flink Runtime
Stateful Computations over Data Streams

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Streaming
Analytics & ML

SQL, PyFlink, Tables

This gives you a robust foundation for a wide range of use cases:

@morsapaes13

Flink Runtime
Stateful Computations over Data Streams

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Stateful Stream Processing

Streaming
Analytics & ML

SQL, PyFlink, Tables

Classical, core stream processing use cases that build on the primitives of streams, state and time.

@morsapaes14

Service Monitoring & Anomaly Detection

Stateful Stream Processing

● Explicit control over these primitives

● Complex computations and customization

● Maximize performance and reliability

Large-scale Data Pipelines ML-Based Fraud Detection

Example Use Cases

Classical, core stream processing use cases that build on the primitives of streams, state and time.

https://www.youtube.com/watch?v=9y27FJgz5-M
https://www.youtube.com/watch?v=p8qSWE_nAAE
https://www.ververica.com/blog/real-time-fraud-detection-ing-bank-apache-flink?utm_source=cp&utm_campaign=wad2020

@morsapaes15

Flink Runtime
Stateful Computations over Data Streams

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Streaming
Analytics & ML

SQL, PyFlink, Tables

Streaming Analytics & ML

More high-level or domain-specific use cases that can be modeled with SQL/Python and dynamic tables.

@morsapaes16

Streaming Analytics & ML

● Focus on logic, not implementation

● Mixed workloads (batch and streaming)

● Maximize developer speed and autonomy

More high-level or domain-specific use cases that can be modeled with SQL/Python and dynamic tables.

Example Use Cases

Build and Maintain Materialized Views ML Feature GenerationE2E Streaming Analytics Pipelines

https://youtu.be/nGOrFtPfci0
https://youtu.be/gSRjTm4AHjk
https://eng.uber.com/athenax/

@morsapaes17

Flink Runtime
Stateful Computations over Data Streams

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Event-Driven Applications

Check out the new StateFun API

Streaming
Analytics & ML

SQL, PyFlink, Tables

Use cases that extend stream processing to stateful serverless applications.

Learn more: Introducing Stateful Functions 2.0 - Stream Processing Meets Serverless Applications

https://flink.apache.org/stateful-functions.html?utm_source=cp&utm_campaign=wad2020
https://youtu.be/NF0hXZfUyqE

@morsapaes18

More Apache Flink Users

Learn More: Powered by Flink, Speakers – Flink Forward San Francisco 2019, Speakers – Flink Forward Europe 2019

https://flink.apache.org/poweredby.html?utm_source=cp&utm_campaign=wad2020
https://sf-2019.flink-forward.org/speakers
https://europe-2019.flink-forward.org/speakers

@morsapaes

How big can you go?

@morsapaes20

Alibaba: Double 11 / Singles Day

Search Rec. SecurityBIAds

incl. sub-second updates to the GMV dashboard

Real-time Data Applications

Infrastructure

>5K
nodes

Data Size

985PB

Throughput (Peak)

2.5B
events/sec

Latency

Sub-sec

State Size (Biggest)

100TB>500K
CPU cores

Learn more: Optimizations in Blink Runtime for Global Shopping Festival at Alibaba

https://www.youtube.com/watch?v=KPXWg-MllFQ

@morsapaes

...but you can also go small...

@morsapaes22

U-Hopper: FogGuru

Learn more: FogGuru: a Fog Computing Platform Based on Apache Flink

FogGuru is a platform for developing and deploying fog applications in resource-constrained devices.

Cluster of 5 Raspberry Pi 3b+ Data volume: 800 events/secDocker Swarm + Flink + Mosquitto

Demo

“The Fridge”

https://hal.inria.fr/hal-02463206/document

@morsapaes

...or just use your laptop + an IDE.

@morsapaes24

What Makes Flink...Flink?

Flexible
APIs

Fault
Tolerance

High
Performance

Stateful
Processing

@morsapaes25

The Flink API Stack

25

Building Blocks (events, state, (event) time)

DataStream API (streams, windows)

Table API (dynamic tables)

Flink SQL

PyFlink

Learn more: Rethinking Flink’s APIs for a Unified Data Processing Framework

Ease of Use

Expressiveness

Flink has layered APIs with different tradeoffs for expressiveness and ease of use. You can mix and match all the APIs!

https://www.infoq.com/articles/rethinking-flink-api/

@morsapaes26

The Flink API Stack

26

Building Blocks (events, state, (event) time)

DataStream API (streams, windows)

Table API (dynamic tables)

Flink SQL

PyFlink

Learn more: Rethinking Flink’s APIs for a Unified Data Processing Framework

Ease of Use

Expressiveness

Streaming Analytics & ML

Stateful Stream
Processing

Flink has layered APIs with different tradeoffs for expressiveness and ease of use. You can mix and match all the APIs!

https://www.infoq.com/articles/rethinking-flink-api/

@morsapaes27

At the Core: Streaming Dataflows

DataStream<SensorReading> sensorData = env.addSource(new FlinkKafkaConsumer(…));

DataStream<SensorReading> avgTemp = sensorData

 .map(r -> new SensorReading(r.id, r.timestamp, (r.temperature-32) * (5.0/9.0)))

 .keyBy(r -> r.id)

 .timeWindow(Time.seconds(5))

 .apply(new TemperatureAverager());

avgTemp.addSink(new ElasticSearchSink(...));

Source

Transformations

Sink

@morsapaes28

At the Core: Streaming Dataflows

DataStream<SensorReading> sensorData = env.addSource(new FlinkKafkaConsumer(…));

DataStream<SensorReading> avgTemp = sensorData

 .map(r -> new SensorReading(r.id, r.timestamp, (r.temperature-32) * (5.0/9.0)))

 .keyBy(r -> r.id)

 .timeWindow(Time.seconds(5))

 .apply(new TemperatureAverager());

avgTemp.addSink(new ElasticSearchSink(...));

Source

Transformations

Sink

Source Transform
Window

(state read/write) Sink

Streaming
Dataflow State

@morsapaes29

At the Core: Streaming Dataflows

Source map()/
keyBy() window() Sink

Flink takes care of transforming your topology into a parallel dataflow that can run distributed on multiple machines.

State

@morsapaes30

At the Core: Streaming Dataflows

Learn more: A Deep-Dive into Flink’s Network Stack

Source
[1]

map()/
keyBy()

[1]

Sink
[1]

Source
[2]

map()/
keyBy()

[2]

Flink takes care of transforming your topology into a parallel dataflow that can run distributed on multiple machines.

State

window()
[1]

State

window()
[2]

Resharding the state

● State is re-scaled automatically with parallel operators

https://flink.apache.org/2019/06/05/flink-network-stack.html?utm_source=cp&utm_campaign=wad2020

@morsapaes31

At the Core: State

State

Scalable, embedded state

Flink stores your state locally in-memory (on the JVM heap) or on disk (RocksDB).

window()
[1]

● State access at memory/disk speed

● The amount of state you can keep is only limited by heap/disk size

State

window()
[2]

@morsapaes32

State

State

Fault Tolerance

What happens when something goes wrong? How does Flink guarantee that this state is fault tolerant?

@morsapaes33

Fault Tolerance: Checkpointing

checkpointed
state

checkpointed
state

checkpointed
state

Persistent Storage
Checkpoint

Flink takes periodic snapshots (i.e. checkpoints) of your application state to guarantee state consistency in case of

failures.

State

State

@morsapaes34

State

State

@morsapaes35

Fault Tolerance: Recovery

checkpointed
state

checkpointed
state

checkpointed
state

Persistent Storage
Restore

State

State

Flink recovers all embedded state and positions in the input streams, giving you failure-free execution semantics with

exactly-once consistency guarantees.

Reset position
in input stream

Recover all
embedded state

@morsapaes36

Beyond Fault Tolerance

Upgrades and
Rollbacks

Blue / Green
Deployments

Cross Datacenter
Failover

State Archiving

Schema Evolution

You can also explicitly trigger these snapshots (i.e. savepoints) for planned, manual backup.

Learn more: “State Unlocked”, Flink Forward Virtual Conference

https://youtu.be/Vjt_ofOSHps

@morsapaes37

At the Core: Time

1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV

Episode
V

Episode
VI

Episode
I

Episode
II

Episode
III

Episode
VII

Event Time When the events in the movies really happened

When the movies were released

@morsapaes38

At the Core: Time

Episode
IV

Episode
V

Episode
VI

Episode
I

Episode
II

Episode
III

Episode
VII

Event Time

● Deterministic results

● Handle out-of-order or late events

● Trade-off result completeness/correctness and latency

Time embedded in the records when they are
produced

@morsapaes39

At the Core: Time

1977 1980 1983 1999 2002 2005

Processing Time

2015

● Non-deterministic results

● Best performance and lowest latency

● Speed > completeness/correctness

System time of the processing machine

@morsapaes40

What Makes Flink...Flink?

Flexible
APIs

High
Performance

Fault
Tolerance

Stateful
Processing

● Ease of use/Expressiveness

● Wide Range of Use Cases

● Distributed State Snapshots

● Exactly-once Guarantees

● State = First-class Citizen

● Event-time Support

● Local State Access

● High Throughput/Low Latency

@morsapaes41

How to Get Started?

Self-paced Training Course Flink SQL Walkthrough

There are many ways to get started with Flink — and you don’t have to know Java/Scala.

● Visit flink.apache.org

● Subscribe to the User Mailing List (for help!) or use the apache-flink tag on SO

● Follow @ApacheFlink

Java/Scala

SQL

PyFlink Walkthrough + Notebooks

Python

https://flink.apache.org/training.html?utm_source=cp&utm_campaign=wad2020
https://github.com/fhueske/flink-sql-demo
https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020
https://twitter.com/ApacheFlink
https://ci.apache.org/projects/flink/flink-docs-stable/tutorials/python_table_api.html?utm_source=cp&utm_campaign=wad2020
https://medium.com/@zjffdu/flink-on-zeppelin-part-3-streaming-5fca1e16754

@morsapaes42

How to Get Started?

Get up and running with Flink on Kubernetes with Ververica Platform Community Edition!

● Permanently free

● Unlimited application size

● Commercial use

Download

Learn more: Announcing Ververica Platform Community Edition

https://www.ververica.com/getting-started?utm_source=cp&utm_campaign=wad2020
https://www.ververica.com/blog/announcing-ververica-platform-community-edition?utm_source=cp&utm_campaign=wad2020

© 2020 Ververica

Thank you!

Marta Paes (@morsapaes)

Developer Advocate

