
Developer Productivity Engineering
What's in it for Java Developers?

@BrianDemers | bdemers

Who is this guy?

@BrianDemers | bdemers

source: Silicon Valley

@BrianDemers | bdemers

VS

@BrianDemers | bdemers

VS

@BrianDemers | bdemers

Developer
Productivity
Engineering

@BrianDemers | bdemers

Code

Code

Wait Time for Local Build

Debug Build Failure

Lunch

Code
Wait Time for Local Build

Investigate/Fix Flaky Tests

Sprint
Waiting time for CI Build

Bottlenecks to Productivity are Everywhere

“Bottlenecks in the toolchain are holding
back the rockstar 10x developers”

Pete Smoot, Software Architect, Dell Technologies

It’s True at Dell, and Everywhere Else

@BrianDemers | bdemers

https://www.software.com/reports/code-time-report

Developers code 52 minutes per day

DPE is a new software development practice

used by leading software development

organizations to maximize developer

productivity and happiness.

Gradle is Pioneering DPE

This Doesn’t Have To Be Our Reality

xkcd.com/303

@BrianDemers | bdemers

source: https://www.cshl.edu/quiz/brain-interrupted/

What Problems Does DPE Solve?

This should have been observable

This takes too long to fix

This takes too long!

Blank background use at will
Blank background use at will

Builds and Tests Take Too Long!

The anatomy and importance of fast feedback cycles

PRODUCTIVITY

QUALITY

FASTER FEEDBACK
CYCLES

Less idle/
wait time

Less
context

switching

More focused
developers

Earlier quality
checks

Fewer downstream
incidents

More frequent
builds

Smaller change
sets

Few merge conflicts Faster MTTR

More efficient
troubleshooting

New behavior

Effect

KEY BENEFIT

KEY:

Faster Builds Improve Creative Flow

Team 1 Team 2

No. of Devs 11 6

Build Time 4 mins 1 mins

No. of local builds 850 1010

Multiple Acceleration Technologies are Best

Build caching delivers fast build and test
feedback cycles

Build Caching

⬢ Introduced to the Java world by Gradle

in 2017
⬢ Maven has an open source build

cache too
⬢ Used by leading technology

companies like Google and Facebook
⬢ Can support both user local and

remote caching for distributed teams

⬢ Build caches are complementary to dependency

caches, not mutually exclusive:

○ A dependency cache caches fully compiled

dependencies

○ A build cache accelerates building a single

source repository

○ A build cache caches build actions (e.g. Gradle

tasks or Maven goals)

What is a Build Cache?

When the inputs have not changed, the output can be reused from a previous run.

Inputs ● Gradle Tasks
● Maven Goal Executions

Outputs● Gradle Tasks
● Maven Goal Executions

Cache Key/Value Calculation
The cacheKey for Gradle Tasks/Maven Goals is based on the Inputs:

cacheKey(javaCompile) = hash(sourceFiles,
 jdk version,
 classpath,
 compiler args)

The cacheEntry contains the output:

cacheEntry[cacheKey(javaCompile)] = fileTree(classFiles)

For more information, see:

https://docs.gradle.org/current/userguide/build_cache.html

https://docs.gradle.org/current/userguide/build_cache.html

41% Savings from
Cache

Remote Build Cache Savings at Dell

https://reproducible-builds.org/

Predictive Test Selection leads to greater efficiencies

https://research.facebook.com/publications/predictive-test-selection/

Conventional Test Selection Approach

Predictive Test Selection Approach

3% 2%

4% 2% 98% 96%

41 Days Testing
Savings Predicted

7 Day Period

Predictive Test Selection Savings at Dell

Test distribution can make tests even faster

How it works

 Autoscaler

Existing solutions - CI fanout

See https://builds.gradle.org/project/Gradle for an example of this strategy

Test execution is distributed by manually partitioning the test set and then running partitions in

parallel on several CI nodes.

pipeline {  
 stage('compile') { ... }  
 parallelStage('test') {  
 step {  
 sh './gradlew :testGroup1'  
 }  
 step {  
 sh './gradlew :testGroup2'  
 }  
 step {  
 sh './gradlew :testGroup3'  
 }  
 }  
}

https://builds.gradle.org/project/Gradle

Assessment of existing solutions

⬢ Build Caching is great in many cases but doesn’t

help when test inputs have changed.

⬢ Single machine parallelism is limited by that

machine’s resources.

⬢ CI fanout does not help during local development,

is inefficient (in particular on ephemeral CI agents

or without build cache), requires manual setup and

test partitioning, and result collection/aggregation

Build Scans speeds up troubleshooting

Improved Troubleshooting

Build Scan - scans.gradle.com

Without focus, problems can sneak back in…
⬢ Infrastructure changes

○ Binary management

○ Caching

○ CI agents
⬢ New annotation processors or versions of

annotation processors
⬢ Build logic configurations settings

○ Build tool version and plugins

○ Compiler and/or Memory settings
⬢ Code refactoring
⬢ New office locations
⬢ Without observability, it is impossible to have

a great and fast developer experience.

Blank background use at will“ You can observe a lot by just watching.”
 - Yogi Berra, Catcher and Philosopher

Performance Insights

Are you tracking local
build and test times?

DPE Organizations Track Build and Test Times

DPE Organizations Track Failure Rates

Test Flaky 299 times

7 day period

Flaky Tests Are Everywhere

Dealing with Flaky Tests

The test is flaky. What do you do now?
a. Try it again
b. Re-run it
c. Re-run it again
d. Ignore it and approve PR
e. All of the above

DPE Organizations Analyze Flaky Tests

All Of This Will Improve CI

Tips

@BrianDemers | bdemers

@BrianDemers | bdemers

Block out time in your calendar!

Blank background use at willDPE will become standard practice
Because the world should foster developer joy

Thank you!

Questions?

Learn more & get free swag
BrianDemers
bdemers

