My first year with event-sourcing

Froscon 25-08-2018

Tim Huijzers
@Dragem
Developer @ drukwerkdeal.nl
Founder of DeventerPHP
Deventer NL

Limited knowledge

No experience

No ES framework
Doomed from the start

First Try

Limited knowledge
Limited experience
New Framework
New DI manager

New ES Framework
Doomed To Fail

Second Try

Some knowledge
Some experience
Known framework
known database
known ES framework

Still doomed

Third Try

S B
& ol U

[HLY ACCLAIN)

GOOD FOR l'l

mvnszn STOUT OUGHT

BeerWarehouse

Why use Event Sourcing

CRUD

Brewer: Founders
Name: KBS
Bought: 2018-03-12

Location: Fridge

Style: Imperial Russian Stout

We will save a new entry in our system because we just
bought it and will store it in the fridge for later.

Brewer: Founders
Name: KBS
Bought: 2018-03-12

Location: Shelf

Style: Imperial Russian Stout

If we change the location the system only knows about that
location.

Brewer:

Name:

Bought:

Location:
Style:

We drank it so it’s not in the system anymore

Brewer: Founders
Name: KBS
Bought: 2018-03-12

Location: All Gone

Style: Imperial Russian Stout

We want to keep a history of everything we drank.

Brewer: Founders
Name: KBS
Bought: 2018-03-12

Location: All Gone

Style: Imperial Russian Stout
ConsumptionDate: 2018-05-03

| want to know when | drank this in my history.

But that’s only for new beers.

Events

BeerAddedToStorage

Brewer: Founders
Beer: KBS
Bought: 2018-03-12

Location: Fridge

Style: Imperial Russian Stout

Same Information as before + Explicit action about what
happened

Make Small Events

BeerBought

Brewer: Founders
Beer: KBS
Bought: 2018-03-12

Style: Imperial Russian Stout

Removed Location and changed name because in the real
world you might not know this yet.

|dentifier: Beerld

Location: Fridge

When returning home | put the beer in my fridge

|dentifier: Beerld

Location: Shelf

| need room in my fridge so | take it out. Using the same
Event

BeerConsumed

|dentifier: Beerld

And at last a event about when | consumed it.

Crud

I know what beer I have.
I know when it was consumed.
I know where it is.

Event-Sourcing

I know what beer I have.

I know when it was consumed.

I know where it is.

I know where it was before.

I know when it was moved.

I know where it was at any point in
time

I know how many times it was moved.
I know when it was added to the
system.

I know what else was moved in that
day.

“Every software program relates to some
activity or interest of its user.”

Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart
of Software

‘. \\\ 3
’I. ETH&S)I[.R\ ITTELLS

When To Use Event Sourcing

You need an audit log

You like scalability

You want to separate the read and write of an application
You want to replay event on a dev machine to get an accurate
situation of what the state was at a point in time.

You want reporting but don’t know what yet.

You are done with mapping objects to tables

When NOT To Use Event Sourcing

You only need a simple CRUD system.

You are processing a lot of personal data.

You just want to query a lot of things on the DB
You are starting on a big project for production

Event Sourcing in code

Prooph

http://getprooph.org/

THE
COMPONENTS FOR PHP

Crafted for Your Enterprise App

INSTALL TAKE A TOUR

BuyBeer BuyBeerHandler

ConsumeBeer ConsumeBeerHandler Beer

BeerBought BeerMoved BeerConsumed

Command

Jfinal class BuyBeer extends Command implements

e

{
use PayloadTrait;
public static function forWarehouse (
string Sbrewer,
string Sname,
string $style,
?string S$location = null
) : BuyBeer {
return new self ([
'brewer' => Sbrewer,
'name' => Sname,
'style' => Sstyle,
'location' => $location

1) 7

PayloadConstructable

public function brewer () : Brewer

{
return Brewer:: fromString(Sthis->payload|['brewer']):;

}
public function name () : BeerName

{
return BeerName:: fromString(Sthis—>payload['name']);

}
public function style(): BeerStyle

{
return BeerStyle::fromString(Sthis->payload['style']);

}
public function location(): Location

{
return Location::fromString($Sthis—>payload['location']);

protected function setPayload(array Spayload): void

{
Sthis->payload = $Spayload;

'final class ConsumeBeer extends Command implements PayloadConstructable
{

use PayloadTrait;

public static function forWarehouse (

string SbeerId
l) : ConsumeBeer {
i return new self ([
'beerId' => Sbeerid

| 1):

public function beerId(): BeerId

{
return BeerlId::fromString(Sthis—->payload['id']):;

i protected function setPayload(array Spayload): wvoid

{
Sthis->payload = $Spayload;

Command Handler

final class BuyBeerHandler
{

private SbeerCollection;

public function __construct(BeerCollection SbeerCollection)

{

Sthis—>beerCollection = SbeerCollection;

public function __ invoke (BuyBeer Scommand): void
{
Sbeer = Beer::buyBeer(
Scommand->brewer (),
Scommand->name (),
Scommand->style ()
);
Sbeer->moveTo (Scommand->location()) ;
Sthis->beerCollection->save (Sbeer) ;

}

final class ConsumeBeerHandler

{

private SbeerCollection;

public function __ construct (BeerCollection SbeerCollection)
{
Sthis—>beerCollection = SbeerCollection;
}
public function __invoke(ConsumeBeer Scommand) : void

{

Sbeer = Sthis->beerCollection->getBeer (Scommand->beerId()):

Sbheer—->consume () ;

Sthis—>beerCollection—->save (Sbeer) ;

Aggregate

public static function buyBeer (
Brewer Sbrewer,
BeerName Sname,
BeerStyle Sstyle
) : Beer {
$self = new self();
SbeerId = BeerId::fromString((string)Uuid: :uuid4()):;
Sself->recordThat (BeerBought: :withData (SbeerId, Sbrewer, Sname, S$style));
return $self;

public function moveTo (Location $location): wvoid

{
Sthis—>recordThat (BeerMoved: :withData (Sthis—>beerId, S$location)):

public function consume(): void
{

Sthis—->recordThat (BeerConsumed: :now(Sthis—>beerId)) ;

Event

'final class BeerBought extends AggregateChanged
{
public static function withData (
BeerId S$beerid,
Brewer Sbrewer,
BeerName Sname,
BeerStyle Sstyle
') : BeerBought {

‘ Sevent

self::occur(
(string) Sbeerid,
' [
'brewer' => (string) Sbrewer,
'name' => (string) $name,

'style' => (string)$style

Sevent->beerId = S$beerId;
Sevent->brewer = Sbrewer;
Sevent->name = Sname;
Sevent->style = $style;

Sevent->date

return S$Sevent;

BoughtDate: : fromDateTime(Sevent—->createdAt ()) ;

public function id(): BeerId

{
if (null === S$this->beerId) {
Sthis->beerId = BeerId::fromString(5this->aggregateId()):;
}

return $this->beerId;

public function brewer () : Brewer

{
if (null === S$this->brewer) {
Sthis->brewer = Brewer::fromString(Sthis—>payload['brewer']);
}

return $this->brewer;
public function name () : BeerName{...}
public function style(): BeerStyle{...}
public function date () : BoughtDate

if (null === S$this->date) {

Sthis->date = BoughtDate::fromDateTime (5this->createdAt());
}

return $this->date;

final class BeerMoved extends AggregateChanged
{

private SbeerId;

private Slocation;

public static function withData (BeerId S$beerId, Location $location): BeerMoved
{
Sevent = self::occur(
(string) Sbeerid,
[

'location' => (string)S$location

) I

Sevent—>beerId = S$beerId;
Sevent—>location = Slocation;

return Sevent;

public function id(): BeerId
{
if (null === Sthis->beerId) {
Sthis->beerId = BeerId::fromString(S5this—->aggregateId());

}
return $this—->beerId;

public function location(): Location

{
if (null === Sthis->location) {
Sthis->location = Location::fromString($this—>payload['location']);
}

return $this->location;

'final class BeerConsumed extends AggregateChanged
{

private SbeerId;

private S$date;

i public static function now(BeerId SbeerId): BeerConsumed
{
‘ Sevent = self::occur(
(string) Sbeerid,
[]
|) :
Sevent->date = ConsumeDate:: fromDateTime(Sevent—->createdAt())
Sevent->beerId = SbeerId;

return Sevent:;

public function id(): BeerId
{
if (null === Sthis->beerId) {
Sthis->beerId = BeerId::fromString(Sthis->aggregateId()):
}

return $this-—>beerId;

public function date () : ConsumeDate
{
if (null === Sthis->beerId) {
Sthis->date = ConsumeDate::fromDateTime(5this->createdAt()):

}
return $this->date;

Back to the Aggregate

protected function whenBeerWasBought (BeerBought Sevent): void
{
Sthis->brewer = Sevent->brewer();
Sthis->name = Sevent-—>name () ;
Sthis->style = Sevent->style():
Sthis->bought = Sevent->date():
}
protected function whenBeerWasMoved (BeerMoved Sevent): wvoid
{
Sthis->location = Sevent->location();
}
protected function whenBeerWasConsumed (BeerConsumed Sevent): wvoid
{
Sthis->consumed = $Sevent->date();
}
protected function apply(AggregateChanged Sevent): void
{
switch (true) {
case Sevent instanceof BeerBought:
Sthis->whenBeerWasBought (Sevent) ;
break;
case Sevent instanceof BeerMoved:
Sthis->whenBeerWasMoved (Sevent) ;
break;
case Sevent instanceof BeerConsumed:
Sthis->whenBeerWasConsumed (Sevent) ;
break;

public function brewer () : Brewer

{

return $this->brewer;

}
public function name () : BeerName

{

return $this->name;

}
public function style(): BeerStyle

{

return $this->style;

}
public function boughtOn() : BoughtDate

{
return $this->bought;

}
public function consumedOn () : ConsumeDate

{

return $this->consumed;

protected function aggregateId(): string

{
return (string)$this->beerId;

BuyBeer BuyBeerHandler

ConsumeBeer ConsumeBeerHandler Beer

BeerBought BeerMoved BeerConsumed

Think About Side Effects

linterface BeerCollection

{
public function save (Beer Sheer);

public function getBeer (BeerId SbeerId): Beer;

', \'.‘
| ” -

’ ' ‘ \\:‘.
‘ «za We are golag to build a

a0E 4 great boagder wall!
> s *~

Structuring your application

¥ Blsrc
¥ [1 BeerWarehouse
3 Application
¥ 3 Domain
¥ [Beer

¥ [Command
° BuyBeer.php
e ConsumeBeer.php

¥ [CommandHandier
0 BuyBeerHandler.php
a ConsumeBeerHandler.php

¥ [Event
° BeerBought.php
a BeerConsumed.php
a BeerMoved.php

¥ [Repository
G BeerCollection.php

¥ [ValueObject
ﬂ Beerld.php
° BeerName.php
3 BeerStyle.php
° BoughtDate.php
° Brewer.php
e ConsumeDate.php
° Location.php

° Beer.php
» [infra
» [vendor
@ composer.json

Understanding the DB

event streams

no

event id
event_name
payload

metadata

created_at

aggregate_version
aggregate id
aggregate type

How many beers do | have?

How many different styles do | have?

How many beers have | drank last 30 days?

Projection

A Projection allows you to loop through all event (past and present) and build your
OwWI Views.

e Read Model

o Define the data you would like to use.
e Projection
o Loops through the events and applies that data to your view

e Finder
o Helps you find data from that view.

final class BeerProjection implements ReadModelProjection

{
public function project (ReadModelProjector Sprojector): ReadModelProjector

{
Sprojector->fromStream(streamName: 'event steam')
—>init (function (): array {
return [];
})
—>when ([
BeerBought::class => function(&g&g&g, BeerBought Sevent) {
/** @var BeerReadModel SreadModel */
SreadModel = Sthis->readModel () ;
SreadModel->stack(type€: 'insert', [
'id' => (string) Sevent->id(),

'brewer' => (string) Sevent->brewer(),
'name' => (string) Sevent->name (),
'style' => (string) Sevent->style(),
'bought on' => (string)Sevent->date ()
1):
},

BeerMoved::class => function(Sstate, BeerMoved Sevent) {
/** @var BeerReadModel SreadModel */
SreadModel = S$this->readModel () ;
SreadModel->stack(type: 'update', [
'id' => (string) Sevent->id(),

'location' => (string) $Sevent->location()
1)7
},
BeerConsumed: :class => function(ﬁg&g&g, BeerConsumed Sevent) {
/** @var BeerReadModel SreadModel */
SreadModel = S$this->readModel () ;
SreadModel->stack(type: 'delete', [
'id'" => (string) $event->id(),

1):

1);

return Sprojector;

Pitfalls

Refactoring is harder, think about your
architecture

Versioning

e (Change an Event but support the old version
e Make a new Event
e Make the Event right from the start

Something wrong with the event

Event are immutable, So don’t change them

Try solving it another way first.

Correct errors with new events

Try a upcaster

Make a new stream and fill it with mutated events (and test)

Change the events in the database

But what if | have like 100 trillion gazillion
events?

CALM 'I'IIAT SII/T IIIIWN'

B e e

Snapshots

You Do Not Need Snapshots From The start

Trigger on Event Count

Pure Event Sourcing Is Not A Holy Grail

Do Not Save Personal Data In Events

Make Projections For All You Lists

Try It In A Hackathon First

Most Of The Time Your DB Is Not Holy

What Now?

http://getprooph.org/

THE
COMPONENTS FOR PHP

Crafted for Your Enterprise App

INSTALL TAKE A TOUR

0 This repository Pull requests Issues Marketplace Explore

I prooph / proophessor-do-symfony @OwWatchv 19 destar 80 YFork 33

<> Code Issues 4 Pull requests 0 Projects 0 Wiki Insights
Symfony version of proophessor-do CQRS + Event Sourcing example app http://getprooph.org/

® 75 commits ¥ 1 branch © 0 releases 22 11 contributors
- .

Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥

‘? prolic use mysqgl 5.7 only Latest commit cf@989f 6 days ago
i .docker Rewrite to use flex and prooph v7 7 months ago
i bin Add EventStoreMgmtUi 2 months ago
I config Merge pull request #25 from UFOMelkor/hotfix/projections 7 days ago
B docs Add EventStoreMgmtUi 2 months ago
i public Add EventStoreMgmtUi 2 months ago

Bl src Add EventStoreMgmtUi 2 months ago

Source

https://github.com/prooph/proophessor-do-symfony

http://getprooph.ora/

https://github.com/prooph/proophessor-do-symfony
http://getprooph.org/

Other Tools

e Broadway
o No Upcaster,
o No Snapshots,
o No Replaying
e Axon
o Upcasting by MessageFactory,
o Snapshots by Trigger on event count,
o Replaying by Example code for replay

e Akka

o Upcasting by Event Adapter,
o Snapshots decided by actor,
o Replaying

Thanks, Any Questions?

Example code from talk on:
https://qgithub.com/webbaard/BeerWarehouse

https://github.com/webbaard/BeerWarehouse

