
7 Things Executives 
Can Learn From 
Software Engineers

Matt Stratton
Staff Developer Advocate • Pulumi
@mattstratton





The power of 
iteration





Small teams 
move fast



Small teams move fast
● Glue work between the teams
● Black box squads (input/output)
● Conway's law
● Software contracts extend to teams (“this api does x” etc)



Fast feedback



Fast Feedback

● Set success criteria that is measurable
● Get changes in front of users/consumers quickly
● Create a process to share all feedback as soon as possible
● Automate feedback where possible



Trust but 
verify



Trust, But Verify

● Guardrails are good!
● Make the right way the easy way
● People want to do the right thing, but mistakes can happen



Collaboration 
over 

competition



Collaboration over Competition

● Power structures can create unintended consequences
● Ownership/fiefdoms
● “Who moved my cheese”? (or who touched it)
● Resource guarding



Westrum Model



Community 
spirit



Community Spirit

● Developers love to work in communities
● Communities can be internal and external
● We can learn from our peers - and help them as well
● Fewer things have to be secret than we think



Learning 
culture



Learning Culture
● Learning from Incidents
● Shadow rotations (not just for juniors and not just for tech)
● Blamelessness



Incidents are unplanned 
investments; their costs have 
already been incurred. Your org’s 
challenge is to get ROI on those 
events.
- John Allspaw, Adaptive Capacity Labs



RCA != learning



Shadow Rotations



The impulse to blame and punish has the
unintended effect of disincentivizing the
knowledge sharing required to learn from
incidents



Resilience and Organizational 
Dynamics



Blunt / Sharp End

People directly 
engaged in the 
work 

“Chop wood, carry 
water”

Sharp EndBlunt End

Removed from 
experience

Upstream decision 
makers



Sharp End

Constantly building and destroying 
systems

Strong signaling

Improve systems based on strain

Will do so naturally if given ownership



[Psychological safety is] a sense of
confidence that the team will not 
embarrass, reject, or punish 
someone for speaking up

Amy Edmondson, Professor, Harvard Business School



Radical candor?
If you are asking for candor/blunt feedback, what are you doing to 
make this safe?



Thank you!
Twitter - @mattstratton

GitHub - mattstratton

Slides - speaking.mattstratton.com

LinkedIn - linkedin.com/in/mattstratton

Podcast - ArrestedDevOps.com

DevOps Party Games - devopspartygames.com


