Multi-tasking in PHP

eeeeeeeeeeeeeeeeeeeeee

Wednesday, December 5, 12

About Me

Formerly CTO for
Company52

Currently work at
Brandmovers on
Northside Drive

Self-taught

Full-time geek since
2007

Brandmovers’

ROFLCAT.CON

Wednesday, December 5, 12

Use Cases

® System resources are
not the bottleneck

® Batch processing
involving an API:

e E-Malil

® Geocoding
® FElectronic billing

® Daemons

Wednesday, December 5, 12

Alternatives

® Gearman
® curl multi *

® Other scripting languages

Wednesday, December 5, 12

Theory

Wednesday, December 5, 12

Two ways to multi-task

Multi-processing Multi-threading

Separate memory Shared memory

Errors are isolated Errors are not isolated
Separate permissions Same permissions

Linux/UNIX Windows

Wednesday, December 5, 12

Multiprocessing Multithreading

\
\
\
\
\
Process 1 | Process 1 (program)
\
| v
\
| Thread 1
state: virtual nemor |
PC, stack processor y | state: virtual Y
| PC, stack processor M-
}
}
\
Process 2 } Thread 2
\
state: W vitual Pl
| PC, stack (| processor M4—1 1.om ory
state: virtual memor |
PC, stack processor y | o
: :
}
- | Thread m
() \
state: virtual H
Process n | PC, stack processor W4
\
\
\
\
.
state: virtual memor | .
PC, stack processor y |
| Process n

Courtesy www.fmc-modeling.org

Wednesday, December 5, 12

http://www.fmc-modeling.org/
http://www.fmc-modeling.org/

Multiprocessing

® “The simultaneous execution of two or
more programs by separate CPUs under
integrated control.”

® Clones the entire process, except resources

® Copy-on-write memory

Wednesday, December 5, 12

Wednesday, December 5, 12

Before fork

Executing —»

Forking

Global
Data

Code

Stack

After fork,

During fork, parent
IS suspended
and cloned

Global
processes Data I
execute
independently
Executing —| Code I

Stack

Global | =
Data)

Code | ‘ }

- «— Executing

Diagram courtesy cnx.org

Child Process

® A cloned copy of a parent process

® Receives a new process |ID and a parent
process ID

® Does some work

® Dies

Wednesday, December 5, 12

...sort of.

Photo Credit: Christopher Brian (2011 Toronto Zombie Walk)

Wednesday, December 5, 12

Parent Responsibilities

® Reproduction
® Monitors child process status

® “Reap” zombie processes

Wednesday, December 5, 12

Process Signals

Description

SIGCHLD Child process died
SIGINT User Interrupt
SIGTERM Terminate
SIGKILL Forcibly terminate

Wednesday, December 5, 12

PHP Implementation

eeeeeeeeeeeeeeeeeeeeee

Requirements

® Unix-like operating system
o PHP 4.1+

® PHP PCNTL extension
(compile with --enable-pcntl)

® PHP Semaphore extension, optional
(--enable-sysvsem, --enable-sysvshm, --enable-sysvmsg)

® Plenty of memory

® Multiple CPU cores

Wednesday, December 5, 12

N o U A~ W N

Wednesday, December 5, 12

Overview

. Define signal handlers

Fetch a dataset

Fork off one child process for each item

Stop forking when a threshold is reached, and sleep
Reap a child process whenever SIGCHLD is received
If there’s more work to do, fork more processes

When all child processes have been reaped,
terminate

declare(ticks = |);

/I Setup our signal handlers
pcntl_signal(SIGTERM, "signal _handler");
pcntl_signal(SIGINT, "signal handler");
pcntl_signal(SIGCHLD, "signal handler");

Wednesday, December 5, 12

function signal _handler($signal)
{
switch ($signal)
{
case SIGINT:
case SIGTERM:
/1 kill all child processes
exit(0);
case SIGCHLD:
// reap a child process
reap_ child();
break;

Wednesday, December 5, 12

$pid = pentl_fork();

switch($pid)
{

case O:
// Child process
call_user_func($callback, $data);
posix_ kill(posix_getppid(), SIGCHLD);
exit;
case -1:
/] Parent process, fork failed
throw new Exception("Out of memory!");
default:
// Parent process, fork succeeded

$processes[$pid] = TRUE;
J

Wednesday, December 5, 12

Repeat for
each unit of work

eeeeeeeeeeeeeeeeeeeeee

function reap_child()

{
/I Check if any child process has terminated,
// and if so remove it from memory

$pid = pcntl_wait($status, WNOHANG);

if ($pid < 0)

{ throw new Exception("Out of memory");
}elseif ($pid > 0)

i unset($processes[$pid]);

J

Wednesday, December 5, 12

Demo Time!
http://gist.github.com/4212160

https://gist.github.com/4212160
https://gist.github.com/4212160

Wednesday, December 5, 12

DON'T:

® DON'T fork a web process (CLI only!)
® DON'T overload your system

® DON'T open resources before forking
® DO respect common POSIX signals

® DO remove zombie processes

® DO force new database connections in children
mysql_reconnect($s, $u, $p, TRUE);

Wednesday, December 5, 12

Challenges

eeeeeeeeeeeeeeeeeeeeee

Race Conditions

® A logic bug where the result is affected by the
sequence or timing of uncontrollable events

® Adding debug logic can change timing
® Dirty reads

® [ost data

® Unpredictable behavior

® Deadlocks, hanging, crashing

Wednesday, December 5, 12

save
add $100

/—b $782.00 7 > $782.00 /N $882.00
\ {7 $782.00, __1,$782.00 ___1$982.00 ﬁ

add $200 add $200

$782.00

Wednesday, December 5, 12

e — e e
Wednesday, December 5, 12

Solutions

® Handle I/O in the parent process
exclusively

® Manage resources with semaphores
and/or mutexes

Wednesday, December 5, 12

Semaphores

® Semaphore = atomically updated counter
® Mutex = binary semaphore with ownership
® PHP:sem_get(), sem_release()

® Transactional databases use semaphores

Wednesday, December 5, 12

Deadlocks

Bonus Slides

eeeeeeeeeeeeeeeeeeeeee

Shared Memory

® Advanced inter-process communication
® Pass data back to the parent process

® PHP Shared Memory extension
(--enable-shmop)

® PHP SystemV Shared Memory extension
(--enable-sysvshm)

® More robust

® Compatible with other languages

Wednesday, December 5, 12

Daemonization

® Fork, kill parent
® Orphaned child process continues running
® Signal and error handling are critical

® Server daemons usually fork child
processes to handle requests

Wednesday, December 5, 12

Wednesday, December 5, 12

Copyrighted Material

Little

The Book of
Semaphores

2nd Edition

The Ins and Outs of Concurrency Control
and Common Mistakes

UNDERSTANDING SEMAPHORES AND
LEARNING HOW TO APPLY THEM

Allen B. Downey

Thank You!

@compwright
http://bit.ly/atlphpm

http://bit.ly/atlphpm
http://bit.ly/atlphpm

