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About Me
• Formerly CTO for 

Company52

• Currently work at 
Brandmovers on 
Northside Drive

• Self-taught

• Full-time geek since 
2007
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Use Cases
• System resources are 

not the bottleneck

• Batch processing 
involving an API:

• E-Mail

• Geocoding

• Electronic billing

• Daemons
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Alternatives

• Gearman

• curl_multi_*

• Other scripting languages
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Theory
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Two ways to multi-task

Multi-processing Multi-threading

Separate memory Shared memory

Errors are isolated Errors are not isolated

Separate permissions Same permissions

Linux/UNIX Windows
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Multiprocessing

• “The simultaneous execution of two or 
more programs by separate CPUs under 
integrated control.”

• Clones the entire process, except resources

• Copy-on-write memory
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Forking

Diagram courtesy cnx.org
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Child Process

• A cloned copy of a parent process

• Receives a new process ID and a parent 
process ID

• Does some work

• Dies

Wednesday, December 5, 12



...sort of.

Photo Credit: Christopher Brian (2011 Toronto Zombie Walk)
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Parent Responsibilities

• Reproduction

• Monitors child process status

• “Reap” zombie processes
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Process Signals

Signal Description

SIGCHLD Child process died

SIGINT User Interrupt

SIGTERM Terminate

SIGKILL Forcibly terminate
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PHP Implementation
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Requirements

• Unix-like operating system

• PHP 4.1+

• PHP PCNTL extension
(compile with --enable-pcntl)

• PHP Semaphore extension, optional
(--enable-sysvsem, --enable-sysvshm, --enable-sysvmsg)

• Plenty of memory

• Multiple CPU cores
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Overview
1. Define signal handlers

2. Fetch a dataset

3. Fork off one child process for each item

4. Stop forking when a threshold is reached, and sleep

5. Reap a child process whenever SIGCHLD is received

6. If there’s more work to do, fork more processes

7. When all child processes have been reaped, 
terminate
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declare(ticks = 1);

// Setup our signal handlers
pcntl_signal(SIGTERM, "signal_handler");
pcntl_signal(SIGINT,  "signal_handler");
pcntl_signal(SIGCHLD, "signal_handler");
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function signal_handler($signal)
{
	
 switch ($signal)
	
 {
	
 	
 case SIGINT:
	
 	
 case SIGTERM:
	
 	
 	
 // kill all child processes
	
 	
 	
 exit(0);
	
 	
 case SIGCHLD:
	
 	
 	
 // reap a child process
	
 	
 	
 reap_child();
	
 	
 break;
	
 }
}
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$pid = pcntl_fork();

switch($pid)
{
	
 case 0:
	
 	
 // Child process
	
 	
 call_user_func($callback, $data);
	
 	
 posix_kill(posix_getppid(), SIGCHLD);
	
 	
 exit;
	
 case -1:
	
 	
 // Parent process, fork failed
	
 	
 throw new Exception("Out of memory!");
	
 default:
	
 	
 // Parent process, fork succeeded
	
 	
 $processes[$pid] = TRUE;
}
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Repeat for
each unit of work
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function reap_child()
{
	
 // Check if any child process has terminated,
	
 // and if so remove it from memory
	
 $pid = pcntl_wait($status,  WNOHANG);
	
 if ($pid < 0)
	
 {
	
 	
 throw new Exception("Out of memory");
	
 }
	
 elseif ($pid > 0)
	
 {
	
 	
 unset($processes[$pid]);
	
 }	

}
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Demo Time!
http://gist.github.com/4212160
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DON’T:

• DON’T fork a web process (CLI only!)

• DON’T overload your system

• DON’T open resources before forking

• DO respect common POSIX signals

• DO remove zombie processes

• DO force new database connections in children
mysql_reconnect($s, $u, $p, TRUE);
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Challenges

Wednesday, December 5, 12



Race Conditions

• A logic bug where the result is affected by the 
sequence or timing of uncontrollable events

• Adding debug logic can change timing

• Dirty reads

• Lost data

• Unpredictable behavior

• Deadlocks, hanging, crashing
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Solutions

• Handle I/O in the parent process 
exclusively

• Manage resources with semaphores
and/or mutexes
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Semaphores

• Semaphore = atomically updated counter

• Mutex = binary semaphore with ownership

• PHP: sem_get(), sem_release()

• Transactional databases use semaphores
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Deadlocks

Image credit: csunplugged.org
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Bonus Slides
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Shared Memory
• Advanced inter-process communication

• Pass data back to the parent process

• PHP Shared Memory extension
(--enable-shmop)

• PHP System V Shared Memory extension
(--enable-sysvshm)

• More robust

• Compatible with other languages
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Daemonization

• Fork, kill parent

• Orphaned child process continues running 

• Signal and error handling are critical

• Server daemons usually fork child 
processes to handle requests
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Thank You!

@compwright

http://bit.ly/atlphpm
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