
Multi-tasking in PHP

Wednesday, December 5, 12

About Me
• Formerly CTO for

Company52

• Currently work at
Brandmovers on
Northside Drive

• Self-taught

• Full-time geek since
2007

Wednesday, December 5, 12

Wednesday, December 5, 12

Use Cases
• System resources are

not the bottleneck

• Batch processing
involving an API:

• E-Mail

• Geocoding

• Electronic billing

• Daemons

Wednesday, December 5, 12

Alternatives

• Gearman

• curl_multi_*

• Other scripting languages

Wednesday, December 5, 12

Theory

Wednesday, December 5, 12

Two ways to multi-task

Multi-processing Multi-threading

Separate memory Shared memory

Errors are isolated Errors are not isolated

Separate permissions Same permissions

Linux/UNIX Windows

Wednesday, December 5, 12

Process 1

Thread 1

Process 1

virtual
processor

program

state:
PC, stack memory

Process 2

virtual
processor

program

state:
PC, stack memory

Process n

virtual
processor

program

state:
PC, stack memory

program

state:
PC, stack

memory

virtual
processor

Thread 2

state:
PC, stack

virtual
processor

Thread m

state:
PC, stack

virtual
processor

MultithreadingMultiprocessing

Process n

Courtesy www.fmc-modeling.org

Wednesday, December 5, 12

http://www.fmc-modeling.org/
http://www.fmc-modeling.org/

Multiprocessing

• “The simultaneous execution of two or
more programs by separate CPUs under
integrated control.”

• Clones the entire process, except resources

• Copy-on-write memory

Wednesday, December 5, 12

Forking

Diagram courtesy cnx.org

Wednesday, December 5, 12

Child Process

• A cloned copy of a parent process

• Receives a new process ID and a parent
process ID

• Does some work

• Dies

Wednesday, December 5, 12

...sort of.

Photo Credit: Christopher Brian (2011 Toronto Zombie Walk)

Wednesday, December 5, 12

Parent Responsibilities

• Reproduction

• Monitors child process status

• “Reap” zombie processes

Wednesday, December 5, 12

Process Signals

Signal Description

SIGCHLD Child process died

SIGINT User Interrupt

SIGTERM Terminate

SIGKILL Forcibly terminate

Wednesday, December 5, 12

PHP Implementation

Wednesday, December 5, 12

Requirements

• Unix-like operating system

• PHP 4.1+

• PHP PCNTL extension
(compile with --enable-pcntl)

• PHP Semaphore extension, optional
(--enable-sysvsem, --enable-sysvshm, --enable-sysvmsg)

• Plenty of memory

• Multiple CPU cores

Wednesday, December 5, 12

Overview
1. Define signal handlers

2. Fetch a dataset

3. Fork off one child process for each item

4. Stop forking when a threshold is reached, and sleep

5. Reap a child process whenever SIGCHLD is received

6. If there’s more work to do, fork more processes

7. When all child processes have been reaped,
terminate

Wednesday, December 5, 12

declare(ticks = 1);

// Setup our signal handlers
pcntl_signal(SIGTERM, "signal_handler");
pcntl_signal(SIGINT, "signal_handler");
pcntl_signal(SIGCHLD, "signal_handler");

Wednesday, December 5, 12

function signal_handler($signal)
{
	
 switch ($signal)
	
 {
	
 	
 case SIGINT:
	
 	
 case SIGTERM:
	
 	
 	
 // kill all child processes
	
 	
 	
 exit(0);
	
 	
 case SIGCHLD:
	
 	
 	
 // reap a child process
	
 	
 	
 reap_child();
	
 	
 break;
	
 }
}

Wednesday, December 5, 12

$pid = pcntl_fork();

switch($pid)
{
	
 case 0:
	
 	
 // Child process
	
 	
 call_user_func($callback, $data);
	
 	
 posix_kill(posix_getppid(), SIGCHLD);
	
 	
 exit;
	
 case -1:
	
 	
 // Parent process, fork failed
	
 	
 throw new Exception("Out of memory!");
	
 default:
	
 	
 // Parent process, fork succeeded
	
 	
 $processes[$pid] = TRUE;
}

Wednesday, December 5, 12

Repeat for
each unit of work

Wednesday, December 5, 12

function reap_child()
{
	
 // Check if any child process has terminated,
	
 // and if so remove it from memory
	
 $pid = pcntl_wait($status, WNOHANG);
	
 if ($pid < 0)
	
 {
	
 	
 throw new Exception("Out of memory");
	
 }
	
 elseif ($pid > 0)
	
 {
	
 	
 unset($processes[$pid]);
	
 }	

}

Wednesday, December 5, 12

Demo Time!
http://gist.github.com/4212160

Wednesday, December 5, 12

https://gist.github.com/4212160
https://gist.github.com/4212160

Wednesday, December 5, 12

DON’T:

• DON’T fork a web process (CLI only!)

• DON’T overload your system

• DON’T open resources before forking

• DO respect common POSIX signals

• DO remove zombie processes

• DO force new database connections in children
mysql_reconnect($s, $u, $p, TRUE);

Wednesday, December 5, 12

Challenges

Wednesday, December 5, 12

Race Conditions

• A logic bug where the result is affected by the
sequence or timing of uncontrollable events

• Adding debug logic can change timing

• Dirty reads

• Lost data

• Unpredictable behavior

• Deadlocks, hanging, crashing

Wednesday, December 5, 12

Wednesday, December 5, 12

Wednesday, December 5, 12

Solutions

• Handle I/O in the parent process
exclusively

• Manage resources with semaphores
and/or mutexes

Wednesday, December 5, 12

Semaphores

• Semaphore = atomically updated counter

• Mutex = binary semaphore with ownership

• PHP: sem_get(), sem_release()

• Transactional databases use semaphores

Wednesday, December 5, 12

Deadlocks

Image credit: csunplugged.org

Wednesday, December 5, 12

Bonus Slides

Wednesday, December 5, 12

Shared Memory
• Advanced inter-process communication

• Pass data back to the parent process

• PHP Shared Memory extension
(--enable-shmop)

• PHP System V Shared Memory extension
(--enable-sysvshm)

• More robust

• Compatible with other languages

Wednesday, December 5, 12

Daemonization

• Fork, kill parent

• Orphaned child process continues running

• Signal and error handling are critical

• Server daemons usually fork child
processes to handle requests

Wednesday, December 5, 12

Wednesday, December 5, 12

Thank You!

@compwright

http://bit.ly/atlphpm

Wednesday, December 5, 12

http://bit.ly/atlphpm
http://bit.ly/atlphpm

