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Use Cases

® System resources are
not the bottleneck

® Batch processing
involving an API:

e E-Malil

® Geocoding
® FElectronic billing

® Daemons
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Alternatives

® Gearman
® curl multi *

® Other scripting languages
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Theory
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Two ways to multi-task

Multi-processing Multi-threading

Separate memory Shared memory

Errors are isolated Errors are not isolated
Separate permissions Same permissions

Linux/UNIX Windows
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Multiprocessing Multithreading
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Courtesy www.fmc-modeling.org
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Multiprocessing

® “The simultaneous execution of two or
more programs by separate CPUs under
integrated control.”

® Clones the entire process, except resources

® Copy-on-write memory
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Child Process

® A cloned copy of a parent process

® Receives a new process |ID and a parent
process ID

® Does some work

® Dies
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...sort of.

Photo Credit: Christopher Brian (2011 Toronto Zombie Walk)
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Parent Responsibilities

® Reproduction
® Monitors child process status

® “Reap” zombie processes
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Process Signals

Description

SIGCHLD Child process died
SIGINT User Interrupt
SIGTERM Terminate
SIGKILL Forcibly terminate
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PHP Implementation
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Requirements

® Unix-like operating system
o PHP 4.1+

® PHP PCNTL extension
(compile with --enable-pcntl)

® PHP Semaphore extension, optional
(--enable-sysvsem, --enable-sysvshm, --enable-sysvmsg)

® Plenty of memory

® Multiple CPU cores
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Overview

. Define signal handlers

Fetch a dataset

Fork off one child process for each item

Stop forking when a threshold is reached, and sleep
Reap a child process whenever SIGCHLD is received
If there’s more work to do, fork more processes

When all child processes have been reaped,
terminate



declare(ticks = |);

/I Setup our signal handlers
pcntl_signal(SIGTERM, "signal _handler");
pcntl_signal(SIGINT, "signal handler");
pcntl_signal(SIGCHLD, "signal handler");
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function signal _handler($signal)
{
switch ($signal)
{
case SIGINT:
case SIGTERM:
/1 kill all child processes
exit(0);
case SIGCHLD:
// reap a child process
reap_ child();
break;

Wednesday, December 5, 12



$pid = pentl_fork();

switch($pid)
{

case O:
// Child process
call_user_func($callback, $data);
posix_ kill(posix_getppid(), SIGCHLD);
exit;
case -1:
/] Parent process, fork failed
throw new Exception("Out of memory!");
default:
// Parent process, fork succeeded

$processes[$pid] = TRUE;
J
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Repeat for
each unit of work
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function reap_child()

{
/I Check if any child process has terminated,
// and if so remove it from memory

$pid = pcntl_wait($status, WNOHANG);

if ($pid < 0)

{ throw new Exception("Out of memory");
}elseif ($pid > 0)

i unset($processes[$pid]);

J
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Demo Time!
http://gist.github.com/4212160



https://gist.github.com/4212160
https://gist.github.com/4212160
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DON'T:

® DON'T fork a web process (CLI only!)
® DON'T overload your system

® DON'T open resources before forking
® DO respect common POSIX signals

® DO remove zombie processes

® DO force new database connections in children
mysql_reconnect($s, $u, $p, TRUE);
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Challenges
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Race Conditions

® A logic bug where the result is affected by the
sequence or timing of uncontrollable events

® Adding debug logic can change timing
® Dirty reads

® [ost data

® Unpredictable behavior

® Deadlocks, hanging, crashing
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save
add $100

/—b $782.00 7 > $782.00 /N $882.00
\ {7 $782.00, __1,$782.00 ___1$982.00 ﬁ

add $200 add $200

$782.00
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Solutions

® Handle I/O in the parent process
exclusively

® Manage resources with semaphores
and/or mutexes
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Semaphores

® Semaphore = atomically updated counter
® Mutex = binary semaphore with ownership
® PHP:sem_get(), sem_release()

® Transactional databases use semaphores
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Deadlocks




Bonus Slides
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Shared Memory

® Advanced inter-process communication
® Pass data back to the parent process

® PHP Shared Memory extension
(--enable-shmop)

® PHP SystemV Shared Memory extension
(--enable-sysvshm)

® More robust

® Compatible with other languages
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Daemonization

® Fork, kill parent
® Orphaned child process continues running
® Signal and error handling are critical

® Server daemons usually fork child
processes to handle requests

Wednesday, December 5, 12



Wednesday, December 5, 12

Copyrighted Material

Little

The Book of
Semaphores

2nd Edition

The Ins and Outs of Concurrency Control
and Common Mistakes

UNDERSTANDING SEMAPHORES AND
LEARNING HOW TO APPLY THEM

Allen B. Downey




Thank You!

@compwright
http://bit.ly/atlphpm
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