
Do I still need this
dependency

for my Node.js app?

Brian Muenzenmeyer

Minnebar 19

👋 About Me

principal engineer

leader of open source program office

approachableopensource.com

web-infra, moderation, triage

📣
Dependencies are

great!

🆕 New(ish) Features
Feature Introduced Release Status

testing source code 16.17.0 Stable as of 20.0.0

watching source code 16.19.0 Stable as of 20.13.0

parsing arguments 18.3.0 Stable as of 20.0.0

reading environment 20.6.0 Active Development

styling output 20.12.0 Stable, as of 22.13.0

run scripts 22.0.0 Stable, as of 22.0.0

run typescript 22.6.0 Active Development

transform typescript 22.7.0 Active Development

Oct 2024 Jan 2025 Apr 2025 Jul 2025 Oct 2025 Jan 2026 Apr 2026 Jul 2026 Oct 2026

Main

Node.js 18

Node.js 20

Node.js 22

Node.js 23

Node.js 24

UNSTABLE

MAINTENANCE

MAINTENANCE

MAINTENANCEACTIVE

CURRENT

ACTIVECURRENT

Interestingly, these releases potentially replace

an external dependency in your project.

Feature Dependency Replaced

testing source code jest, ava, ts-jest

watching source code nodemon

parsing arguments commander, yargs

reading environment dotenv

styling output colors, chalk

run typescript ts-node, tsc

Interestingly, these releases potentially replace

an external dependency in your project.

Feature Dependency Replaced

testing source code jest, ava, ts-jest

watching source code nodemon

parsing arguments commander, yargs

reading environment dotenv

styling output colors, chalk

run typescript ts-node, tsc, 🌶 deno, 🌶 bun

🥼 Sample Project

I've prepared a contrived CLI and server as a

code sample of incremental migration.

🙉
Timezones... say what?? The business logic isn't

the star here.

🙉
Timezones... say what?? The business logic isn't

the star here.

Let's get started!

Core business logic ripped straight from an LLM

cause they are good at generating garbage:

export const createUTCDate = (
 year,
 month,
 day,
 hour = 0,
 minute = 0,
 second = 0,
 millisecond = 0,
) => {
 return new Date(Date.UTC(year, month, day, hour, minute,
}

export const calculateTimeFromNowTo = (dateString) => {
 const now = new Date()
 const utcNow = createUTCDate(

now getFullYear()

Core business logic ripped straight from an LLM

cause they are good at generating garbage:

export const createUTCDate = (
 year,
 month,
 day,
 hour = 0,
 minute = 0,
 second = 0,
 millisecond = 0,
) => {
 return new Date(Date.UTC(year, month, day, hour, minute,
}

export const calculateTimeFromNowTo = (dateString) => {
 const now = new Date()
 const utcNow = createUTCDate(

now getFullYear()

these days we call that vibin'

You saw the CLI earlier. It also has a server.js file

copy-pastaed from the Node.js homepage:

import { createServer } from 'node:http'

import { calculateTimeFromNowTo } from './lib/calculate.js'

const server = createServer((req, res) => {
 res.writeHead(200, { 'Content-Type': 'text/plain' })
 res.end(calculateTimeFromNowTo('2028-11-07')))
})

server.listen(3000, '127.0.0.1', () => {
 console.log('Listening on 127.0.0.1:3000');
})

Now, with node src/server.js one can visit

 and see the same output.http://localhost:3000

http://localhost:3000/

🧪 Testing Source Code

Introduced 16.17.0

For many projects, I'd turn to jest to test my

code.

🧪 Testing Source Code

Introduced 16.17.0

For many projects, I'd turn to jest to test my

code.

It's been the default for so long, is part of the

OpenJS Foundation, and enjoys a large

ecosystem of tools and attention, making it hard

to argue against.

We can test our createUTCDate function with

this test:

import { createUTCDate } from '../calculate.js'

describe('createUTCDate', () => {
 it('should create a date in UTC time', () => {
 const date = createUTCDate(2026, 3, 20) // zero-inde
 expect(date.toISOString()).toEqual('2026-04-20T00:00
 })
})

And then run it with:

"test": "node --experimental-vm-modules node_modules/jest/bi
"test": "pnpm test:jest --watch",

And then run it with:

"test": "node --experimental-vm-modules node_modules/jest/bi
"test": "pnpm test:jest --watch",

Already there's trouble brewing...

Node.js now includes a built-in test runner,

node --test

improving with each successive release. We can

replace the jest scripts with:

-"test": "node --experimental-vm-modules node_modules/jest/b
-"test": "pnpm test:jest --watch",
+"test": "node --test",
+"test:watch": "node --test --watch",

Here's a test diff:

+import { describe, it } from 'node:test' // no globals
import { createUTCDate } from '../calculate.js'

describe('createUTCDate', () => {
- it('should create a date in UTC time', () => {
+ it('should create a date in UTC time', (test) => {
 const date = createUTCDate(2026, 3, 20)
- expect(date.toISOString()).toEqual('2026-04-20T00:00
+ test.assert.strictEqual(date.toISOString(),'2026-04-
 })
})

I'm not interested in the code golf here, but it is

worth emphasizing two things:

1. Jest's support for ESM is still evolving

(pinned issue since), not yet with a

polished developer experience.

2020

1. Jest's support for ESM is still evolving

(pinned issue since), not yet with a

polished developer experience.

2020

1. Jest's support for ESM is still evolving

(pinned issue since), not yet with a

polished developer experience.

2020

2. Jest is slower, even with one test.

Benchmarking via time pnpm test against

both showed the Node.js test runner to be

2.2 times faster.

👀 Watching Source Code

Introduced 16.19.0

It's a common convenience to have tasks re-run

when as your source code changes during

development.

👀 Watching Source Code

Introduced 16.19.0

It's a common convenience to have tasks re-run

when as your source code changes during

development.

Stopping and restarting the server each time is a

pain.

Many frameworks and tools have this built in.

If not, a common choice is nodemon. Our

sample project contains this script in our

package.json:

"dev": "nodemon --watch src src/server.js"

Many frameworks and tools have this built in.

If not, a common choice is nodemon. Our

sample project contains this script in our

package.json:

"dev": "nodemon --watch src src/server.js"

Works great, and has for a long time.

But now, Node.js has built-in arguments

--watch and --watch-path.

We can replace this with:

-"dev": "nodemon --watch src src/server.js",
+"dev": "node --watch-path src src/server.js",

Not much different at the surface. It works for

this use case.

Not much different at the surface. It works for

this use case.

Critically, it survives parsing errors in the

JavaScript.

💬 Parsing Arguments

Introduced 18.3.0

Our server and CLI should accept the date to

calculate the "time until".

node src/index.js --to 2027-03-21 # my 40th birthday 💀

Node.js supports process.argv since 0.1.27
so what's the fuss?

Node.js supports process.argv since 0.1.27
so what's the fuss?

Tools like yargs and commander have been the

go-to for a long time.

Our arguments start by being parsed with yargs

like this:

import yargs from 'yargs'
import { hideBin } from 'yargs/helpers'

const values = yargs(hideBin(process.argv))
.option('to', {
 type: 'string',
 description: 'Date string to measure time until'
 })
.parseSync()

But we can simplify.

+import { parseArgs } from 'node:util'

-import yargs from 'yargs'
-import { hideBin } from 'yargs/helpers'

-const values = yargs(hideBin(process.argv))
-.option('to', {
- type: 'string',
- description: 'Date string to measure time until'
- })
-.parseSync()

+const { values } = parseArgs({
+ strict: true,
+ options: {
+ to: {

Lops off the two first arguments by default,

synchronous by default, and enough for my

needs.

Lops off the two first arguments by default,

synchronous by default, and enough for my

needs.

Node.js also throws an error for missing or extra

params - which is nice - and again, perhaps

enough.

Lops off the two first arguments by default,

synchronous by default, and enough for my

needs.

Node.js also throws an error for missing or extra

params - which is nice - and again, perhaps

enough.

Need something stronger? You already know

where to look, or could try a newcomer like

bubbletea.

🌲 Reading Environment

Introduced 20.6.0 | Active Development

Environment variables provide flexibility and

portability to code.

The obvious choice for years and years has been

dotenv.

One would likely reach for this wherever they

want to read env:

import 'dotenv/config'

const { PORT } = process.env
...

But Node.js can do this too!.

Delete that dotenv import.

We add this to our package.json dev script:

-"dev": "node --watch-path src src/server.js",
+"dev": "node --env-file=.env --watch-path src src/server.js

We get multiple file support with overrides and a

familiar enough syntax to dotenv files.

We get multiple file support with overrides and a

familiar enough syntax to dotenv files.

Node.js can also error or gracefully handle

missing env files, the choice is yours.

🖌 Styling Output

Introduced 20.12.0 | Stable as of 22.13.0

Say we got that server.js start message.

Maybe we wanna highlight the full URL that

some terminals can click on.

The ubiquitous node_module chalk suffices:

const { PORT } = process.env
import chalk from 'chalk'
...
server.listen(PORT, '127.0.0.1', () => {
 console.log(
 `Listening on ${chalk.blue(chalk.underline(`http://1
)
})

But look at this native Node.js code, quite new if

I do say so myself:

const { PORT } = process.env
-import chalk from 'chalk'
+import { styleText } from 'node:util'

server.listen(PORT, '127.0.0.1', () => {
 console.log(
- `Listening on ${chalk.blue(chalk.underline(`http://127.0
+ `Listening on ${styleText(['underline', 'blue'], `http:/
)
})

📜 Run Scripts

Introduced 22.0.0 | Stable as of 22.0.0

Agnostic, faster script invocation.

Make your package.json a bit more portable

with:

- "lint:fix": "pnpm lint --fix"
+ "lint:fix": "node --run lint -- --fix"

Executables must be in /node_modules/.bin

Executables must be in /node_modules/.bin

In benchmarking, its 200ms faster than npm run

Executables must be in /node_modules/.bin

In benchmarking, its 200ms faster than npm run

Does not run pre-and post- scripts

🎮 Checkpoint
Nice, we got through quite a bit.

But it's always smart to save before the big boss

fight.

What's left?

What's left?

TypeScript.

🏗 TypeScript

Introduced 22.6.0 | Active Development

🏗 TypeScript

Introduced 22.6.0 | Active Development

Native TypeScript support has been a consistent

community ask, and an obvious wedge issue.

We have a TypeScript error in that server code

snippet.

We have a TypeScript error in that server code

snippet.

Did you see it?

We have a TypeScript error in that server code

snippet.

Did you see it?

How to start?

We have a TypeScript error in that server code

snippet.

Did you see it?

How to start?

With a bold rename to server.ts

This is the code in question:

const { PORT } = process.env

server.listen(PORT, '127.0.0.1', () => {
 console.log(
 `Listening on ${styleText(['underline', 'blue'], `ht
)
})

Hint...

const { PORT } = process.env // string | undefined, whoops

server.listen(PORT, '127.0.0.1', () => {
 console.log(
 `Listening on ${styleText(['underline', 'blue'], `ht
)
})

Hint...

const { PORT } = process.env // string | undefined, whoops

server.listen(PORT, '127.0.0.1', () => {
 console.log(
 `Listening on ${styleText(['underline', 'blue'], `ht
)
})

Missing overloads with our inferred typings.

Fixing this is easy enough:

-const { PORT } = process.env
+const PORT = Number(process.env.PORT)

To run it? We can replace the dev script with:

-"dev:node": "node --env-file=.env --watch-path src src/serv
+"dev:node": "node --experimental-strip-types --env-file=.en

And as of v23.6.0 in January, this runs without

the flag at all!

node --env-file=.env --watch-path src src/server.ts

🤓
Reply guy: Well actually, you didn't build the

project at all, it only removed the typings, flow-

style. Sad!

🤓
Reply guy: Well actually, you didn't build the

project at all, it only removed the typings, flow-

style. Sad!

But wait, I say, my editor gave me immediate

feedback of the error, without needing a build

process at all.

Some notes:

no type-stripping under node_modules

Some notes:

no type-stripping under node_modules (yet)

Some notes:

no type-stripping under node_modules (yet)

--experimental-transform-types

Some notes:

no type-stripping under node_modules (yet)

--experimental-transform-types
--erasableSyntaxOnly for TS@5.8

🛑 STOP
Let's not go deeper today.

I'll spare you the ESM + TypeScript + Jest

headache.

👉

Okay, well, can we do the same incremental

running of our server.ts file with a dependency?

Of course we can.

In fact, the ts-node and nodemon docs allude to

the fact that this should just work:

"dev:nodemon": "nodemon --watch src src/server.js",

This was after temporarily dropping the watch

glob, as the default is... *.* 🤝. What we

uncover, however, is a problem lurking around

the whole post, ESM.

> nodemon src/server.ts

[nodemon] 3.1.9
[nodemon] to restart at any time, enter `rs`
[nodemon] watching path(s): *.*
[nodemon] watching extensions: ts,json
[nodemon] starting `ts-node src/server.ts`
TypeError: Unknown file extension ".ts" for /workspaces/time
 at Object.getFileProtocolModuleFormat [as file:] (node:i
 at defaultGetFormat (node:internal/modules/esm/get_forma
 at defaultLoad (node:internal/modules/esm/load:122:22)
 at async ModuleLoader.loadAndTranslate (node:internal/mo
 at async ModuleJob._link (node:internal/modules/esm/modu
 code: 'ERR_UNKNOWN_FILE_EXTENSION'
}
[nodemon] app crashed - waiting for file changes before star

Ugh. Googling around, this is potentially a

"famous" problem with ESM + TypeScript. I won't

even discuss Jest right now. I did get it working

but we shouldn't mention it.

🙊 I'm staying true to this process,

so no, we aren't talking about

Bruno and Deno. That's not the

point, yet. We're almost there, I

promise.

tsx I guess is maybe something? This worked:

"dev:nodemon": "nodemon --exec pnpm tsx src/server.ts"

⚖ Comparisons
This ain't your entire app...

⚖ Comparisons
This ain't your entire app...

...and we can all caveat this with enough

asterisks to call in Legal.

⚖ Comparisons
This ain't your entire app...

...and we can all caveat this with enough

asterisks to call in Legal.

But numbers are numbers.

Metric Before After Delta

node_modules 215 2
0.9%, or 107 times

smaller

size

node_modules
49 MB

2.6

MB

5.3%, or 18 times

smaller

🔬 npm-built node_modules, omitting biome dev
dependencies

⚡ All this, with two orders of

magnitude less dependencies.

Dependabot will be bored.

☀ Pace Layers

symmathesy: together, learn

An entity composed by transcontextual mutual

learning through interaction

— Nora Bateson

🔥 Churn is pace layers in motion.

By design, we can celebrate that:

By design, we can celebrate that:

innovation can be quick / creators have

agency to explore

By design, we can celebrate that:

innovation can be quick / creators have

agency to explore

competition puts pressure on established

systems to improve

By design, we can celebrate that:

innovation can be quick / creators have

agency to explore

competition puts pressure on established

systems to improve

maintainers craving momentum and stability

have space and time to cultivate

By design, we can celebrate that:

innovation can be quick / creators have

agency to explore

competition puts pressure on established

systems to improve

maintainers craving momentum and stability

have space and time to cultivate

layers exist for anyone to contribute within

their means

“Fast learns; slow
remembers.”

— Stewart Brand

Find your layer.
There's room for all of us.

Thanks

