
Turbocharging Walmart.com:
Speed without compromise

Vasanth Kr i shnamoorthy

v a s a n t h _ k v a s a n t h k

Focus Areas

7 Key Optimizations

Approaching Performance

Guardrails for Performance

Over 30%
growth YoY

100 million+
customers per month

Performance as a
Measure Of User
Happiness

Home PageSearchProduct PageCartCheckout Tech Stack

Typical Customer Journey

Customer Journey

TTI - 95th %ile mobile web

42% Improvement

PART 1

Approaching Performance

Where do you start?

“You can’t improve what you don’t measure”

Measure What Matters

TTI – Time to interactive (custom)

TTFB – Time to first byte

TLOAD - Page is fully loaded (custom)

TTFB TTI TLOAD

Define Your Scope

Define Your Scope & Constraints

01 02 03

No compromise to
existing product
features

No slowdown on
new product
features being built

No big rewrites
or tech stack
changes

Identify The Right
Opportunities

Empathize With Your Users

Use data to understand user pain points

Understand
common user flows

Step progression

User distribution by
browsers/devices/connection

Revenue distribution
by browsers & platform

Audit Your Application

Chrome’s Dev Tools WebPageTest & Lighthouse Webpack Bundle Analyzer

Make visiblethe invisible

Apply First
Principles

Principles of Web Performance

1 2 3Do only what is
needed

Minimize round
trip time

Optimize Perceived
Performance

PART 2

7 Key Optimizations

Do only what is needed

Reduce Bundle Size

Code Splitting & Lazy Loading

Cumulative TTI Improvement

18.2%

“Get it when you need it”

Component centric code splitting via
dynamic imports (ES2020)

Code split user/item specific
feature code

Lazy load components which are
below the fold

TTI 18.2%

1

Code Splitting - Learnings

Duplicates in chunks Our sweet spot

< 15 split bundles

Aggressive code splitting increased overall bytes downloaded

Reduced Compression

Cumulative TTI Improvement

18.2%

1

Slim Down Libraries

Recompose React API / Hooks 5KB

Upgrade from Webpack v3 to v4
reduced bundle size by 10%

Cumulative TTI Improvement

18.2%

TTI 9.7%

From Switch To Gains
(compressed)

Moment.js date-fns 50KB

React v15 React v16 15KB

React-Intl Custom utility 14KB

26.1%

2

26.1%

Differential Serving

Enables us to serve modern JS code to users

Why do we need it?

• Transformed ES5 code is verbose (more KB)

• Cut down on polyfills needed (~35KB for us)

Cumulative TTI Improvement

TTI 3.3%

28.5%

3

Differential Serving

Module No-Module Pattern

3

26.1%

Cumulative TTI Improvement

28.5%

Differential Serving - Learnings

On a few browser versions both ES5 & ES6 scripts
were downloaded/executed leading to degraded

experience for those customers

Problem

3

26.1%

Cumulative TTI Improvement

28.5%

Differential Serving - Learnings

On Server side, we check for the user agent passed and
depending on whether the browser supports modern

syntax or not we include the right bundle into the page.

Solution

3

26.1%

Cumulative TTI Improvement

28.5%

Minimize round trip time

Sharing is caring for our users

Shared Bundles

1P/3P bundles
• Shared across whole site

Webpack DLL Plugin

Functional shared bundles
• Shared across Cart & Checkout

TTI 10.2%

25.8%

Cumulative TTI Improvement

35.8%

4

Shared Bundles - Learnings

Needs unification of package
versions across applications

Updates to shared bundles require
coordination with multiple teams

Functional shared bundles

Updates frequently and requires
changes across all shared web-apps

Testing/validations & Release effort

1P/3P shared bundle

Cumulative TTI Improvement

28.5%35.8%

4

Shared Header/Footer

Header/Footer package was bundled into each app leading to bloat

Any change required testing/validation & deployments across for all teams

Problem

5

Shared Header/Footer

Solution

Endpoint
returning
header/footer
HTML Fragment

Markup & bundles
get cached

Render
Header/Footer &
rest of the App in
parallel during SSR

5

35.8%

Shared Header/Footer

70%
reduction in client side JS

Cumulative TTI improvement

TTI 8.1%

Reuse existing code and render
with React on Server Side

Use Vanilla JS for handling
events on client

Optimization

41%

5

41%

Brotli Compression

12% smaller bundles than GZIP

Cumulative TTI Improvement

TTI 9.8%

“It’s like GZIP on steroids”

46.7%

6

Brotli Compression – Learnings

For Best Perf - Pre-build compressed assets and
serve it from a CDN to save the runtime cost.

Dynamic compression can be slow

41%

Cumulative TTI Improvement

46.7%

6

For Differential Serving

Brotli compressed ES5 bundles pretty well

ES6 vs ES5 bundle difference dropped from
10% to 4%*

*YMMV

Brotli Compression - Learnings

41%

Cumulative TTI Improvement

46.7%

6

Optimize Perceived Performance

46.7%

<script>

Leverage Priorities & Resource Hints

<script async><script defer>

TTI 5.7%

Cumulative TTI improvement

HTML parsing

HTML parsing paused

Script download

Script execution

49.7%

7

Leverage Priorities & Resource Hints

Tells the browser to download
and cache a resource to have them

available for execution when it is needed

46.7%

Cumulative TTI Improvement

49.7%

7

Leverage Priorities & Resource Hints

dns-prefetch

DNS lookup

preconnect

DNS lookup, TLS
negotiation, and TCP

handshake

46.7%

Cumulative TTI Improvement

49.7%

7

Can we make it faster?

“The fastest HTTP request is the
one not made”

Prefetch

Downloads scripts with lower
priority & stores it in prefetch cache

Cached for at least 5mins

Does not execute JS

Cumulative TTI Improvement

49.7%

TTI 12.1%

55.8%

8

Prefetch - Learnings

Problem

Impacts current page’s

load times

Workaround

• We include prefetch tags into the page after
onLoad event is fired

• We do not prefetch if the user has data saver on

Cumulative TTI Improvement

49.7%55.8%

8

Video Comparison

Before After

Key Takeaways

Perf Optimizations – Key Takeaways

Reduce Bundle Size
• Code Splitting & Lazy Loading
• Slim down libraries
• Differential Serving

Shared bundles
• 1P/3P & functional shared bundles
• Header/Footer HTML fragment

Better compression
• Brotli

Priorities & resource hints
• Prefer defer over async
• dns-prefetch & preconnect
• Prefetch

Font Optimization
• Remove unused glyphs & styles
• WOFF & WOFF2 for better compression

Image
• Lazy load images
• WEBP
• SVG

Redux State transfer optimization
• Send state to client in an inert tag

Other Cleanup
• Code which you have always wanted to delete.

You know what they are J

Cumulative TTI Improvement

55.8%60%

Perf Improvements Over Time

TTI

Time (months)

What you think it was

What it actually was

Challenges

3rd Party Scripts:
Ads, Marketing Tags

Cross-team initiatives
Time to complete

A/B Tests

Performance
Regressions

Guardrails For Performance

PART 3

Performance Budgets

TTFB Speed
Index

TTI Page
Complete

Performance Metrics Per PR

Bundle Size check at PR

Performance Metrics Per PR

View perf metrics over time

Lighthouse metrics for each PR

Compare Metrics Across Branches

Teams can compare branch
performance to production
performance

Click through commits and see
what caused the degradation

Results used to accept or reject release

Sustaining A Performance Culture

Embed performance
thinking early in the

product development
process

Use tooling and data to
help drive decisions on
performance tradeoffs

Maintain gains by
monitoring key metrics,

tooling and having
guardrails

Recognize
performance is hard

and there will be
tradeoffs

The Team

Bryan Morgan Ah Hyun Cho Hiren Patel Madhav Deverkonda Test Armada &
Torbit Team

Denys Mikhalenko Gauri Shankar Rodrigo Delgado Jon Campbell Uma Mahesh

Cory Dang Meet Parikh Megha Gupta Patrick Stapleton Vijay Muniswamy

Future Plans

01

03

04

02

Progressive Web App (PWA)

Experimenting with alternative UI libraries

Streaming SSR

Different experiences based on Speed Profiles

Performance Is A Journey,
Not A Destination

THANK YOU

v a s a n t h _ k v a s a n t h k

