IMPROUINGTHHDEVEIORER

EXRERIENCRWITHIDEVELORER:
PRODUGTIVITWENGINEERING

[ETRSYTALKS
rananen

;::'”“' ,A , —
(@JBARUCH HDPE HDEUELOPERWEEK SPEAKING.JEARUZCH™

(@JBARUCH #DPE HDEUELORERVEEK

BARUCH SADOGURSKY - (@JBARUCH

x Developer Productivity Advocate
x QradleInc

x Development -> DevOps -> #OPE

[

uggfuu,@
Sl

SOFTWARES
iy
O = el

(@JBARUCH H#DPE HDEVELOPERWEEK SPEAKING.JEARU.CH

SHOWNOTES

x speaking.jbaru.c
x Slides

x Video

x All the links!

(@JBARUCH HDEVELOPERWEEK SPEAKING.JEARU.CH

3 FACTORS LEAD o BETTER
PERFORMANCE & PERSONAL
SATISFACTION..
. AUTONOMY
% masTery G A _
) PURPOQE - o 7

\
%

@JBARUCH HDPE HDEUFIOPERIJEEK: SPERKING.JEARU CH™ =

DON'T RUIN THE FLow

'\ —

-

(@JBARUCH, HDEUEIORERVIEEKS SPEAKING-JEARU.CH

"THE BUILD TAKES FOREVER, |

AM DISTRACTED 10 DO OTHER
THINGS AND THE CONTEXT
SWITCH IS TERRIBLE"

(@YJBARUCH, #DPE HDFUELORERWEEKS SPEAKINGYJEARUICH

-

Development FPains are VViadespreaad

Which of the following challenges or pain points did your
organization experience prior to implementing Developer
Productivity Engineering?

Too much time spent waiting on build and test

feedback either locally or during Cl

Inability to easily troubleshoot and determine

the root cause of build, test and Cl failures _ 65%

including flaky tests

Insufficient observability of analytics on build

and test performance and regressions, failure _ 99%

trends, and productivity bottlenecks

(@YBARYCH =AMz HOEUEIORERVIEEKS

DON'T FRUSTRATE
THE DEVELOPERS

"WE HAVE A FLANKY TEST, IT IS

IRRELEVANT 99.5% OF THE
TIME, BUT IT ALWAYS RUNS
AND IT IS LAST IN THE SUITE"”

(@JBARUCH H#DPE HDEVELOPERWEEK SPEAKING.JEARU.CH

-

Development FPains are VViadespreaad

Which of the following challenges or pain points did your
organization experience prior to implementing Developer
Productivity Engineering?

Too much time spent waiting on build and test — 849/
feedback either locally or during Cl °

Inability to easily troubleshoot and determine

the root cause of build, test and Cl failures
including flaky tests

Insufficient observability of analytics on build

and test performance and regressions, failure _ 99%

trends, and productivity bottlenecks

(@YBARYCH =AMz HOEUEIORERVIEEKS

DON'T BOIL THE FROG

"I HAVE A FEELING THAT
EVERYTHING IS SLOWER
SOMEHOW. .. "

) (@JENRUCH #DPE #[PEUE[@PERWEEK

Development FPains are VViadespreaad

Which of the following challenges or pain points did your
organization experience prior to implementing Developer
Productivity Engineering?

Too much time spent waiting on build and test — 849/
feedback either locally or during Cl °
Inability to easily troubleshoot and determine

the root cause of build, test and Cl failures — 65%

including flaky tests

Insufficient observability of analytics on build

and test performance and regressions, failure — 99%

trends, and productivity bottlenecks

(@YBARYCH =AMz HOEUEIORERVIEEKS

DEVELOPER PRODUCTIVITY - A/M/P == MOTIIATION

Autonomy wm) Tools and people aren’t in my way

Tools and processes help me to

Mastery oxcel

| want to be producfive, i.e. create

Purpose =) the product

(@JBARUCH H#DPE HDEUELOPERWEEK SPEAKING.JEARU.CH

DEVELOPER PRODUCTIVITY ENGINEERING!

(@JBARUCH H#DPE HDEUELOPERWEEK SPEAKING.JEARU.CH

DEVELOPER PRODUCTIVITY ENGINEERING

Foster Faster Feedback Collaborate through -
Effective Tooling

Eliminate Toil for
Developers
- M

(@JBARUCH HDPE HDEUELORERWEEK SPEAKING:JEARU:CH

TALK IS CHEAP,
SHOW ME THE
GOODS!

SMALL DPE IMPROVEMENTS MAKE A HUGE DIFFERENCE

Generate code faster: Better IDE
Test better: Testcontainers
Enforce better code: Sonar

Test more reliably: Flaky test detection
Foster Faster Feedback:

@ @JENRUEH 2005

FEEDBACK EFFICIENCY

IDE: Sub-seconds (I type, it marks it red)
Build: Seconds
Cl: Minutes

Production: Hours/Days

(@JBARUCH H#DPE HDEUELOPERWEEK SPEAKING.JEARU.CH

I0E

Faster

Feedback Time

Slower

H#DPE

REVERSE DEPENDENCY ON DISTANCE FROM DEVELOPERS

Distance from Developers

Expected

Production

REVERSE DEPENDENCY ON DISTANCE FROM DEVELOPERS

IDE Build Cl Production
Faster

o
£
-
X

@

O
O
e

Q

Q
W

|

Slower \

Distance from Developers

Expected —e—Real

H#DPE

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

HEY! GET BACK

"'i

OH CARRY ON.

(@JBARUCH H#DPE HDEUELOPERWEEK SPEAKING:JEARU.CH

(@JBARUCH HDEUELORERWEEK

C O 8 nhttps://www.bruceeckel.com/2021/01/02/the-problem-with-gradle/

stymied me. This is the problem I had with Gradle:

To do anything you have to know everything

(@JBARUCH, #DPE HDEUEIORERVEEKS SPEAKINGY EARUYCH

D it

(@JBARUCH H#DPE HDEUELORERWEEK SPEAKING:JEARU.CH

WHAT IS BUILD?

Project setup
Downloading the Internet

Artifact generation: Compilation, packaging, etc

Tests
Artifact deployment

(@JBARUCH H#DPE HDEUELORERVEEK SPEAKING:JEARU:CH

WHAT CAN GO WRONG?

Project setup
Downloading the Internet

Artifact generation: Compilation, packaging, etc

Tests
Artifact deployment

(@JBARUCH H#DPE HDEUELORERVEEK SPEAKING:JEARU:CH

WHEN CAN IT GO WRONG?

AT ANY TIME,

-

VR
/ \ >

7 D
L I

(@JBARUCH H#DPE HDEUELORERVEEK SPEAKING-JEARU.CH

THE BUILD FRUSTRATES
THE DEVELOPERS

LET'S ASK cHATGPT

What techniques can | use to speed up a Maven build?

Sure, here are some quick tips to speed up a Maven build:

. Skip Tests: Use " -DskipTests " to skip running tests.
i g i E.g., *-T 4" for4threads.
. Offline Mode: Use " - -offline" to avoid checking for updates.
. Incremental Build: Use "mvn -am -pl- to build only changed modules and their
dependencies.
5. Profile: Use Maven profiles to conditionally enable plugins.
6. Resource Filtering: Limit resource filtering to only necessary files.

7. Use a Mirror: Set up a local Nexus or Artifactory mirror.

Hope that helps! Got a preference for Gradle, but these should give your Maven build a

boost.

(@JBARUCH HDPE HDEUELORERWEEK SPEAKING:JEARU:CH

WHAT THE ACTUAL Fx¢K 2!

x Skipping tests defeats the purpose of
the build!

x How about skipping compilation?

x We want faster feedback, not less
feedback

H#DPE

WHAT FEEDBACK DO WE WANT?

(@YJEARUCH, H#DPE HDFUELORERVEEKS SPEAKINGYEARUYCH

C1/€D PIPELINE QUALITY GATES

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Non- Non- Non-

Basic Basic Basic Quality Quality Quality func func func

Unit tests Code coverage Static code analysis Secrets scanning Load Testing Compliance

(@JBARUCH HDPE HDEUELORERWEEK SPEAKING:JEARU:CH

TWO TYPES OF FEFDBACK

e, CI/CO
MSIIVEFIROVNONIS | x - we never wait for it

results are distracting

e.g. build
SYNCHRONOUS we'll wait for it in the flow

we'll be pissed off when it's slow

(@JBARUCH HDPE HDEUELOPERWEEK SPEAKING:JEARU:CH

IDE
Faster

Feedback Time

Slower

H#DPE

REVERSE DEPENDENCY ON DISTANCE FROM DEVELOPERS

Build Cl

Distance from Developers

Production

REVERSE DEPENDENCY ON DISTANCE FROM DEVELOPERS

IDE Build Cl Production
Faster

Feedback Time

Slower

H#DPE

IDEAL BUILD TIME FEEDBACK

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Non- Non- Non-

Basic Basic Basic Quality Quality Quality func func func

Unit tests Code coverage Static code analysis Secrets scanning Load Testing Compliance

(@JBARUCH HDPE HDEUELORERWEEK SPEAKING:JEARU:CH

ITESLOW,
THEBUILDZ"

2 @EARUCH

DELIGHTFUL BUILD (PicK TWO):

PROVIDES MAX FEEDBACK
&2 Fasr *

(@JBARUCH H#DPE HDEUELOPERWEEK SPEAKING:JEARU.CH

SKIP WHAT CAN BE SKIPPED
(BUT NO MORE!)

(@YJBARUCH, #DPE HDFUELORERWEEKS SPEAKINGYJEARUICH

AVOIDANCE: INCREMENTAL Byjip

x Don’'t build what didn’t changed
x Don’t build what isn’'t affected

(@JBARUCH, #DPE HDEUEIORERVEEKS SPEAKINGEARUSCH

AVOIDANCE: INCREMENTAL Byjip SHORTCOMINGS

x Relies on produced artifacts
x Relies on architectural decisions

(@JBARUCH H#DPE HDEUELORERWEEK SPEAKING:JEARU:CH

AVOIDANCE: CACHING

x Makes the build faster
x Makes the build faster for everybody
x Makes the build faster always

x Makes all parts of the build faster

H#DPE

Start time @
[Last 7 days

() Build time ®
17 min 25 sec

Uptodate @ ®

1 min 58 sec

6h 40m

9

Relative

[Serial execution ®

20 min 58 sec (1.4x

Local build cache @ @

9 min 17/ sec

(@Y ENRUGH|

Custom values @

Fixed

< Avoidance savings @ @ Build cache overhead @

14 min 19 sec @ss8% .7 scc

Remote build cache @ @

3 min 5 sec

Tags @

£ Dependency downloading @

3.8 sec

Outcome @

5h
3h 20m
1h 40m |
wal malal n 0 B B M. » ll__III I_- l-l B -_II_-I-I--___III. II llllllllllllll-lllllllllllll L Ill__.. n-BE_NRNEN u mulln .Ill

AVOIDANCE: PREDICTIVE TEST SELECTION

x Learns de-facto code change effects
x Skips tests with

high degree of confidence

(@JBARUCH, H#DPE HDEUEIORERVEEKS SPEAKINGYEARUZCH

PREDICTIVE TEST PREDICTION

what changed

where it changed

(@JBARUCH.

Correlate
with
observed
test
failures

HDEUELORERWEEK

Predictions
which
changes
will fail
which tests

SPEAKING:JEARU:CH

BLACK MAGIC IN AcTION

x The more tests a project
has, the less they break

x Refactoringsin Java
break tests less than
in JavaScript

(@JBARUCH HDPE HDEUELORERVEEKS SPEAKING-JEARU.CH

Start time @
[Last 7 days

Custom values @

Relative Fixed

@ Predictive Test Selection » Q Find test task/goal

Usage obuids Simulations 44 builds)
Mean build time: N/A Mean build time: 5 min 13 sec

Tags @

Outcome @

Selection profile @

Conservative ~ Standard ~ Fast

Task/Goal failures predicted Test failures predicted @ Savings potential) Avoidable tests ? Unavoidable tests ®
99.4% (322 of 324 total 95.6% (564 of 590 total 6.d 4 hruasw 212K (38%) 332K (59%)
7 INCORRECT 2d 14h AVOIDABLE
I 2 I 6d4h
CORRECT UNAVOIDABLE
0 0Os
PASSED INSUFF. DATA
I 238K I 12h32m
717K 2d 14h
Oct 18 Oct 19 Oct 20 Oct 21 Oct 22 Oct 23 Oct 24 Oct 25 Oct 18 Oct 19 Oct 20 Oct 21 Oct 22 Oct 23 Oct 24 Oct 25
Tasks/Goals by mean duration (top 50) & All predictions ~ Only incorrect
Path Task/Goal failures predicted @ Test failures predicted ® Simulations ® Mean duration ® , Total test time & Savings potential ®
spring-boot-build » :spring-boot-project:spring-boot-tools:spring-boot-maven-plugin:intTest 0/0 0/0 60/ 60 n— 40 min 26 sec 1d16hr 20 hr 35 min (51%)
org.springframework.data:spring-data-neo4j:failsafe:integration-test@default 0/0 0/0 11/11 n— 30 min 9 sec 5 hr 46 min 2 hr 33 min (44%)
spring-boot-build » :spring-boot-project:spring-boot-tools:spring-boot-gradle-plugin:test 7/7(100%) 11/29(37.9%) 62/ 62 n— 20 min 1 sec 20 hr 18 min 3 hr 2 min (15%)
spring-boot-build » :spring-boot-project:spring-boot-autoconfigure:test 6/ 6(100%) 6/6(100%) 160/ 160 ne—— 16 min 18 sec 1d17hr 22 hr 2 min (53%)
spring-bogg=kuild » :spring-boot-tests:spring-boot-integration-tests:spring-boot-launch-script-tests:intTest 115/ 115 ne— 15 min 13 sec 1d5hr 12 hr 44 min (44%)
MNE. / 3
(@Y ENRUGH HOPG
ramework.data:spring-data-cassandra:failsafe:integration-test@default 1 hr17 min 0 sec (0%)

SPEED UP WHAT
CAN'T BE SKIPPED

(@JBARUCH H#DPE HDEVELOPERWEEK SPEAKING.JEARU.CH

TEST PARALLELIZATION

x Use max power of local machine
x (Yes, your boss should buy you the

bleeding edge)

(@JBARUCH, H#DPE HDEUEIORERVEEKS SPEAKINGYEARUZCH

Task path Started after) Duration (3) Task path Started after 3 Duration ®
:clean 0.499s 0.053s :clean 0.416s 0.048s
:compileJava 0.553s 0.146s :compileJava 0.465s 0.085s
:processResources NO-SOURCE 0.699s 0.001s :processResources NO-SOURCE 0.550s 0.000s
:classes 0.700s 0.000s :classes 0.550s 0.000s
;jar 0.701s 0.040s ;jar 0.551s 0.040s
:assemble 0.741s 0.000s :assemble 0.591s 0.000s
:compileTestJava 0.741s 0.242s :compileTestJava 0.592s 0.212s
:processTestResources NO-SOURCE 0.000s :processTestResources NO-SOURCE 0.001s
- : 0 80 0.000

0.985s 1m 59.135s 0.805s 10.553s

NU.120 0.0V .) 0.00Us

tasks.test { this: Test!
onlyIf { true }

maxParallelForks = Runtime.getRuntime().availableProcessors()

Foct |l oanana J Thic 1 oct] AnainAl AN

(@YJEARUCH, #DPE HDEUEIORERVIEEKS SPEAKINGYEARUICH

TEST DISTRIBUTION

Cl uses fan-out to speed-up tests
Shouldnt you enjoy it for local tests?

Use the cloud to distribute test load
RUN ALL THE NEEDED TESTS!

(@JBARUCH, #DPE HDEUEIORERVIEEKS SPEAKINGYEARUYCH

(@JBARUCH H#DPE HDEUELOPERWEEK SPEAKING:JEARU:CH

OBSERUE AND IMPROVE

x Measure local build times across
time and environments

x Detect downfacing trends
x Find root causes and improve

(@JBARUCH HDPE HDEUELORERVEEKS SPEAKINGZEARUZCH

Basic search Advanced search <

User ® Hostname (@ Project ® Requested tasks/goals/targets @
Start time @ Custom values @ Tags @
(% Jan 16 2020 03:00 EDT Feb 3 2020 00:59 EDT Relative Fixed git branch name=sam/performance-scenario x ()

Overview Build time Serial execution Avoidance savings Build cache overhead Dependency downloading

Build cache hit ®

4.2 sec

Build cache miss ®

34 min 40 sec

Non-cacheable ®

44 sec

[™ Serial execution

35 min 41 sec 7.7

Build tool ® Build tool version ®
Outcome @
Day Week Month

Up to date & non-actionable (3

13 sec

1h 56m

58m 20s

Os

Jan 13 - Jan 20 Jan 20 - Jan 27

Up to date (®

17 min 31 sec

< Avoidance savings 3

24 min 25 sec

Local build cache (®
4 min 31 sec

MEAN
35m 41s

MEDIAN
33m 49s

25TH-75TH %ILE
31s —55m 10s

5TH-95TH %ILE
23s—1h 32m

Jan 27 -Feb 3

Remote build cache

2 min 23 sec

-

. MEAN
1 24m 25s

| MEDIAN

THE GAINS ARE REAL!

DPE Dramatically Improves
Productivity

Almost every surveyed IT organization agreed 8 4 o/
that “Since integrating Developer Productivity 3

Engineering into our development process,
the time savings we experienced on build and
test cycle times have dramatically improved
developer productivity.”

DPE Fosters Developer Joy

84% of surveyed users agree that 84%
DPE’s impact on their toolchain
makes their job more enjoyable.

TechValidate
by SurveyMonkey

UAVENCEIly Published: Sep. 25,2023 TVID: 930-05A-A5F
) @VE/RUGH S

QA AND

SOCIAL ADS .

