

Baruch Sadogursky - @jbaruch

× Developer Productivity Advocate
× Gradle Inc
× Development -> DevOps -> #DPE

shownotes

× speaking.jbaru.ch
× Slides
× Video
× All the links!

Don’t ruin the flow

“The build takes forever, I
am distracted to do other

things and the context
switch is terrible”

Don’t frustrate
the developers

“we have a flanky test, it is
irrelevant 99.5% of the
time , but it always runs

and it is last in the suite"

Don’t boil the frog

“I have a feeling that
everything is slower

somehow…”

Developer Productivity == A/M/P == motivation

Autonomy Tools and people aren’t in my way

Mastery Tools and processes help me to
excel

Purpose I want to be productive, i.e. create
the product

Developer productivity Engineering!

Developer Productivity Engineering

Foster Faster Feedback

Eliminate Toil for
Developers

Collaborate through
Effective Tooling

Prioritize Automation
and Eliminate
Bottlenecks

Embrace Rigorous
Observability for

Proactive Improvement

Dedicated
Organizational Mindset

Outcomes Over Output

Talk is cheap,
show me the
goods!

Small DPE improvements make a huge difference
× Generate code faster: Better IDE
× Test better: Testcontainers
× Enforce better code: Sonar
× Test more reliably: Flaky test detection
× Foster Faster Feedback:

feedback efficiency

× IDE: Sub-seconds (I type, it marks it red)
× Build: Seconds
× CI: Minutes
× Production: Hours/Days

Fe
ed

ba
ck

 T
im

e

Distance from Developers

Expected

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

Fe
ed

ba
ck

 T
im

e

Distance from Developers

Expected Real

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

It is slow!

It is slow and the developers have no idea why!

× Project setup
× Downloading the Internet
× Artifact generation: Compilation, packaging, etc
× Tests
× Artifact deployment

What is build?

× Project setup
× Downloading the Internet
× Artifact generation: Compilation, packaging, etc
× Tests
× Artifact deployment

What can go wrong?

At any time.

When can it go wrong?

The Build frustrates
the developers

Let’s ask Chatgpt

What the actual f*ck?!

× Skipping tests defeats the purpose of
the build!

× How about skipping compilation?
× We want faster feedback, not less

feedback

What feedback do we want?

Ci/cd pipeline quality gates

Non-
func

Non-
func

Non-
funcSecSecSecQualityQualityQualityBasicBasicBasic

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Unit tests Code coverage Static code analysis Secrets scanning Load Testing Compliance

Two types of feedback

x e.g., CI/CD
x we never wait for it
x results are distracting

x e.g., build
x we’ll wait for it in the flow
x we’ll be pissed off when it’s slow

Fe
ed

ba
ck

 T
im

e

Distance from Developers

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

Fe
ed

ba
ck

 T
im

e

Distance from Developers

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

synchronous asynchronous

Commit time

Ideal build time feedback

Non-
func

Non-
func

Non-
funcSecSecSecQualityQualityQualityBasicBasicBasic

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Unit tests Code coverage Static code analysis Secrets scanning Load Testing Compliance

Delightful build (pick two):

☑ provides max feedback
☑ fast

Skip what can be skipped
(but no more!)

Avoidance: Incremental build

× Don’t build what didn’t changed
× Don’t build what isn’t affected

Avoidance: Incremental build shortcomings

× Relies on produced artifacts
× Relies on architectural decisions

Avoidance: Caching

× Makes the build faster
× Makes the build faster for everybody
× Makes the build faster always
× Makes all parts of the build faster

Avoidance: Predictive test selection

× Learns de-facto code change effects
× Skips tests with

high degree of confidence

Predictive Test prediction

What changed
Where it changed

Correlate
with

observed
test

failures

Predictions
which

changes
will fail

which tests

Black magic in action

× The more tests a project
has, the less they break

× Refactorings in Java
break tests less than
in JavaScript

Speed up what
can’t be skipped

Test parallelization

× Use max power of local machine
× (Yes, your boss should buy you the

bleeding edge)

Test distribution

× CI uses fan-out to speed-up tests
× Shouldn’t you enjoy it for local tests?
× Use the cloud to distribute test load
× RUN ALL THE NEEDED TESTS!

Don’t let it slide

Observe and improve

× Measure local build times across
time and environments

× Detect downfacing trends
× Find root causes and improve

The gains are real!

