
Search
a new era
David Pilato | @dadoonet

Elasticsearch
You Know, for Search

These are not the droids
you are looking for.

GET /_analyze

{

 "char_filter": ["html_strip"],

 "tokenizer": "standard",

 "filter": ["lowercase", "stop", "snowball"],

 "text": "These are not the droids
 you are looking for."

}

These are not the droids you are
looking for.

These are not the droids you are
looking for.

"char_filter": "html_strip"

These are not the droids you are looking for.

These
are
not
the
droids
you
are
looking
for

"tokenizer": "standard"

These
are
not
the
droids
you
are
looking
for

"filter": "lowercase"

these
are
not
the
droids
you
are
looking
for

droids
you

looking

"filter": "stop"

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

droids
you

looking

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

droid
you

look

"filter": "snowball"

These are not the droids you are looking for.

{ "tokens": [{

 "token": "droid",

 "start_offset": 27, "end_offset": 33,

 "type": "<ALPHANUM>", "position": 4

 },{

 "token": "you",

 "start_offset": 34, "end_offset": 37,

 "type": "<ALPHANUM>", "position": 5

 }, {

 "token": "look",

 "start_offset": 42, "end_offset": 49,

 "type": "<ALPHANUM>", "position": 7

 }]}

Semantic
search

≠
Literal

matches

Elasticsearch
You Know, for Search

Elasticsearch
You Know, for Vector Search

What is a
 Vector ?

Embeddings represent your data
Example: 1-dimensional vector

CartoonRealistic

Character Vector

[-1]

[1]

Multiple dimensions
represent different data aspects

Human

Machine

CartoonRealistic

Character Vector

[-1, 1]

[1, 0]

Character Vector

[-1.0, 1.0]

[1.0, 0.0]

[-1.0, 0.8]

[1.0, 1.0]

[-1.0, -1.0]

Similar data
is grouped together

CartoonRealistic

Human

Machine

Vector search ranks objects
by similarity (~relevance) to the query

CartoonRealistic

Rank Result

Query

1

2

3

4

5

Human

Machine

How do you
index vectors ?

Architecture of Vector Search

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text"
 }
 "desc_embedding": {
 "type": "dense_vector"
 }
 }
 }
}

dense_vector field type

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…],
 "img_embedding":[0.012,0.0,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton"
}

Data Ingestion and Embedding Generation

POST /ecommerce/_doc

Source data

POST ecommerce/_doc

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

With Elastic ML

POST /ecommerce/_doc

Source data
{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 }

How do you
search vectors ?

Architecture of Vector Search

GET ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "query_vector": [0.123, 0.244,...]

 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query

GET ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "query_vector_builder": {
 "text_embedding": {
 "model_text": "summer clothes",
 "model_id": <text-embedding-model>
 }
 }
 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query (with Elastic ML)

Transformer model

semantic_text field type

POST ecommerce/_doc
{
 "description": "Our best-selling…"
}

GET ecommerce/_search
{
 "query": {
 "semantic": {
 "field": "desc_embedding"
 "query" : "I'm looking for a red dress for a DJ party"
}}}

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text",
 "copy_to": ["desc_embedding"]
 }
 "desc_embedding": {
 "type": "semantic_text",
 "inference_id": "e5-small-multilingual"
 }
 }
 }
}

PUT /_inference/text_embedding/e5-small-multilingual
{
 "service": "elasticsearch",
 "service_settings": {
 "num_allocations": 1,
 "num_threads": 1,
 "model_id": ".multilingual-e5-small_linux-x86_64"
 }
}

Architecture of Vector Search

But how does it
really work?

q

Similarity

Human

Realistic

θ

d1

d2

cos(θ) =
⃗q × ⃗d

| ⃗q | × | ⃗d |

_score =
1 + cos(θ)

2

Similarity: cosine (cosine)

_score =
1 + 1

2
= 1 _score =

1 + 0
2

= 0.5 _score =
1 − 1

2
= 0

θ θ θ

Similar vectors
θ close to 0

cos(θ) close to 1

Orthogonal vectors
θ close to 90°

cos(θ) close to 0

Opposite vectors
θ close to 180°

cos(θ) close to -1

https://djdadoo.pilato.fr/

https://github.com/dadoonet/music-search/

https://github.com/dadoonet/music-search/

Search
a new era
David Pilato | @dadoonet

