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These are not the droids  
you are looking for.



GET /_analyze 

{ 

  "char_filter": [ "html_strip" ], 

  "tokenizer": "standard", 

  "filter": [ "lowercase", "stop", "snowball" ], 

  "text": "These are <em>not</em> the droids 
         you are looking for." 

}
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These are <em>not</em> the droids you are looking for. 

{ "tokens": [{ 

      "token": "droid", 

      "start_offset": 27, "end_offset": 33, 

      "type": "<ALPHANUM>", "position": 4 

    },{ 

      "token": "you", 

      "start_offset": 34, "end_offset": 37, 

      "type": "<ALPHANUM>", "position": 5 

    }, { 

      "token": "look", 

      "start_offset": 42, "end_offset": 49, 

      "type": "<ALPHANUM>", "position": 7 

    }]}



Semantic 
search 

≠  
Literal  

matches



Elasticsearch
You Know, for Search



Elasticsearch
You Know, for  Vector  Search



What is a 
  Vector ?



Embeddings represent your data 
Example: 1-dimensional vector
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Multiple dimensions 
represent different data aspects
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Vector search ranks objects 
by similarity (~relevance) to the query
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How do you
index  vectors ?



Architecture of Vector Search



PUT ecommerce 
{ 
  "mappings": { 
    "properties": { 
      "description": { 
        "type": "text" 
      } 
      "desc_embedding": { 
        "type": "dense_vector" 
      } 
    } 
  } 
}

dense_vector field type



{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…], 
  "img_embedding":[0.012,0.0,…] 
}

{ 
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  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…] 
}

{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton" 
}

Data Ingestion and Embedding Generation

POST /ecommerce/_doc

Source data

POST ecommerce/_doc



{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…] 
}

With Elastic ML

POST /ecommerce/_doc

Source data
{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
 }



How do you
search  vectors ?



Architecture of Vector Search



GET ecommerce/_search 
{ 
 "query" : { 
    "bool": { 
      "must": [{   
         "knn": { 
           "field": "desc_embbeding",         
           "query_vector": [0.123, 0.244,...] 
         

         } 
      }], 
      "filter": { 
        "term": { 
          "department": "women" 
        } 
      }      
    } 
  }, 
  "size": 10 
}

knn query



GET ecommerce/_search 
{ 
 "query" : { 
    "bool": { 
      "must": [{   
         "knn": { 
           "field": "desc_embbeding", 
           "query_vector_builder": { 
             "text_embedding": { 
              "model_text": "summer clothes", 
              "model_id": <text-embedding-model>  
             } 
           } 
         } 
      }], 
      "filter": { 
        "term": { 
          "department": "women" 
        } 
      }      
    } 
  }, 
  "size": 10 
}

knn query (with Elastic ML)

Transformer model



semantic_text field type

POST ecommerce/_doc 
{ 
  "description": "Our best-selling…" 
}

GET ecommerce/_search 
{ 
  "query": { 
    "semantic": { 
      "field": "desc_embedding" 
      "query" : "I'm looking for a red dress for a DJ party" 
}}}

PUT ecommerce 
{ 
  "mappings": { 
    "properties": { 
      "description": { 
        "type": "text", 
        "copy_to": [ "desc_embedding" ] 
      } 
      "desc_embedding": { 
        "type": "semantic_text", 
        "inference_id": "e5-small-multilingual" 
      } 
    } 
  } 
}

PUT /_inference/text_embedding/e5-small-multilingual 
{ 
    "service": "elasticsearch", 
    "service_settings": { 
       "num_allocations": 1, 
       "num_threads": 1, 
       "model_id": ".multilingual-e5-small_linux-x86_64" 
    } 
}



Architecture of Vector Search



But how does it
really work?
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Similarity: cosine (cosine)
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Similar vectors 
θ close to 0 

cos(θ) close to 1

Orthogonal vectors 
θ close to 90° 

cos(θ) close to 0

Opposite vectors 
θ close to 180° 

cos(θ) close to -1



https://djdadoo.pilato.fr/



https://github.com/dadoonet/music-search/

https://github.com/dadoonet/music-search/
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