
Practical Performance
Optimization in React

Kemet Dugue
kemetdugue

kdugue



Agenda
1. Brief Introduction

2. Sensible Optimization & Popular Use Cases

a. Unnecessary Re-rendering & Expensive Computations

b. Lists & Virtualization

3. Tools for Debugging (React Dev Tools)

4. Performance Best Practices

5. Q+A



About Me

● Interests: 
○ lo-fi house
○ tennis
○ cats

 

● Engineer at

Whatever brings you joy!



Opinions and Q+A



Sensible Optimization aka When is the right time to 
optimize?

● App functionality slowness
○ Scrolling
○ Updating of views
○ Click events

● React component design 
(use best practices) 

● Don’t prematurely optimize! 



Popular Optimization Use Cases

● Unnecessary re-renders

● Expensive Computations

● Collections (small and 
large)

● Large App Bundle*



Component to DOM (Two Phases)

1. Render phase
○ JSX transformed
○ Can be called multiple times for a given change (re-render)

i. Component state change
ii. Props Change

iii. (in case of children) Parent re-renders

○ Reconciliation:
i. “Diffing” algorithm: determines parts of the node tree that have to be updated

ii. Current virtual DOM to previous virtual DOM

2. Commit phase
○ changes to actual DOM (commits to changes resulted from reconciliation); 
○ Called only once for a given change







● Assume props are 
rarely changing





Memoize Expensive 
Calculations/ Components

● Use for Expensive calculations

● React.memo for functional 
components

● useMemo to memoize values

● PureComponent for 
class components



Rendering Collections

● Using index as key can be 
sometimes deceptive

● Still, index as key can negatively 
affect performance

Credit: Robin Pokorny



Large Collection Solution: List Virtualization (Windowing)

● Rendering 1000’s of rows

● Virtualization: rendering only 
what is in the viewport

● Popular Libraries:
○ react-window
○ react-virtualized

● Tradeoff: pay in rendering time 
later rather than upfront (initial 
load)

Credit: web.dev



Todo App with React Dev Tools!



Best Practices

● Make sure  optimization is a sensible one!
○ Every optimization comes with a tradeoff
○ Measure performance first

● Don’t pass new references ( arrays, objects, functions) as props to components. 

● Use a unique and stable key value for a list. Minimum usage is index (be cautious)

● Pass only the props that are needed by the component (no “...props”)

● Consider PureComponents (class) or React.memo (functional) for the following scenarios: 
props that rarely change, components that renders often

● useMemo to memoize expensive calculations



Best Practices (cont’d)

● useCallback* to maintain callback reference
○ EX:  child component is already memoized and takes in that callback as prop

● Use React Dev Tools for debugging components. 

● Don’t query DOM directly (EX: document.querySelector)

● Keep constructor() light



Resources

● React official docs: https://reactjs.org/

● React Dev Tools Tutorial: https://react-devtools-tutorial.vercel.app/

● List Virtualization Libraries
○ react-window: https://github.com/bvaughn/react-window
○ react-virtualized: https://github.com/bvaughn/react-virtualized

● Code-Splitting (for large app bundles): 
https://reactjs.org/docs/code-splitting.html

https://reactjs.org/
https://react-devtools-tutorial.vercel.app/
https://github.com/bvaughn/react-window
https://github.com/bvaughn/react-virtualized
https://reactjs.org/docs/code-splitting.html


Questions????


