
9 CRITERIA TO ASSESS YOUR 

PROJECT'S MATURITY 

& IMPROVE

2 1  M a y  2 0 2 4

Petyo Dimitrov



About me

17 years in Software Engineering

8 years as a Software Architect

Head of Architecture at Qinshift Bulgaria 
(ex. Musala Soft)

PhD in Computer Science from Technical 
University Sofia & Guest lecturer



Agenda

What is technical maturity?

How to assess it?

What are the 9 criteria?

How to organize the results?

How to communicate them?



What is (technical) maturity?

maturity is realizing that 
Tom was not the villain



Why does it matter?



Why 9 criteria?

Miller's Law

https://en.wikipedia.org/wiki/Miller%27s_law


Security Code quality Deployability

Testability​ Operability​ Integration​

Cloud 
capability​

3rd-partyProcesses​



Methodology – Kick-off meeting(s)

• Explain the process & its importance

• Clarify the scope of the assessment (get client sign off)

• Identify key criteria depending on the project

• Align with the project's timeline

• Request documents & other materials (e.g. source code, access)

• Send reference materials for the criteria

• Ensure the participation of key team members (schedule meetings 
with specific attendees and agenda)



Methodology – Review provided materials

• Documents* – requirements spec, project plan, test 
plan, HLA, infrastructure info (IaC), API docs, development process, 
user guide, etc.

• Board

• Automated code review – via Sonar, NDepend, Dependency 
Checker, etc.

• Selective manual code review(s)

• Exploratory testing – check key functionality, pen testing



Methodology – Populate checklist

reference

https://bit.ly/4axuhgS


Security (1/9)

System hardening

Error & logon failures 
logging

1FA

Logging of user-IDs, system 
time and type of change

Logging of user-IDs, system 
time, and change before & 
after

Validation of input data

Encryption in transit

Usage of secure hashes

2FA

Encryption at rest



Security (1/9)

•Address OWASP Top 10 (injection, XSS, outdated deps., etc.)

• Static Application Security Testing (SAST) is used (e.g. 
Sonar)

•Penetration Testing is performed/planned (via ZAP, SSL 
Labs, etc.)

•Dependency Vulnerabilities are addressed periodically

•Principle of Least Privilege access control (for Cloud, 3rd 
parties, etc.)

https://owasp.org/www-project-top-ten/


Code quality (2/9)

•Automated Static Code Analysis (SCA) - via Sonar*

• Technical Debt as % of Backlog

•Coding standards are defined

•Peer reviews are conducted

•Pair programming



Deployability (3/9)

•CI/CD pipelines (+ as Code)

• Independent build & deployment

•Versioned Artifact repository

•Rollback mechanism

• Environment parity



Testability (4/9)

• High test Coverage

• Efficient Test pyramid distribution

• Test code as production code

• Performance tests

• Execute as part of CI/CD

• Test Driven Development



Operability (5/9)

• Standardized logging

•Central configuration & user administration

•Health-checks & metrics

•Backup & restore procedures

•Root Cause Analysis is performed

•Automated restart & reconnect

•Automated notifications for production issues



Integration (6/9)

•API based on REST / GraphQL / gRPC / messaging is 
provided

•API documentation is available (+ generated automatically)

•API is easy to understand

•Asynchronous integration is used

•Non-functional requirements are defined (performance, 
availability, etc.)



Cloud capability (7/9)

•Runs on virtualized hardware

•Containerized & orchestrated

• Twelve Factor App principles

•Horizontal scalability (+ Elasticity)

• Fault-tolerant design

•Disaster Recovery is planned

•Modularization (via MSA, EDA, SOA, etc.)

https://12factor.net/


Processes (8/9)

• Project Management and Version Control System(s)

• Core project documentation is available - glossary, architecture, 

environments, development process, on-boarding guide.

• Testing strategy is defined and documented

• Agile ceremonies



3rd-party dependencies (9/9)

•Up-to-date dependencies

•Regular dependency upgrade process

•Dependencies with proper OSS licenses

• For critical components:
o under support with SLA
o popular & actively maintained OSS projects



Results – Template

• Serves as a professional deliverable for the client

• Gives consistency between assessments

• Simplifies onboarding of new architects

• Contents:
o 1-page summary (for management)
o Project overview* (business case, architecture, technologies, infrastructure)
o Recommendations (for the team)
o Constraints (scope, access to team/client, access to materials)
o Appendix (methodology explanation, information sources, additional 

materials & references)



1-page summary – radio chart



1-page summary – colored highlights

MM Criterion
Assessment 

(Expectation)
Details Impact

Security
Satisfactory
(Excellent)

Positive: Basic measures for security are taken. External 
penetration testing is planned.
Negative: OWASP Top 10 measures are not fully 
implemented (brute force/XSS/CORS issues, sensitive 
data exposure).

Sensitive user 
information can be 
accessed by a 
competitor.

Code 
Quality

Not
satisfactory

(Good)

Positive: The main application features are working.
Negative: SCA (Sonar) and linting (eslint) are not used. 
There are a lot of technical debts and multiple blocker+ 
issues. Lots of commented out blocks or test snippets in 
the code base. Hardcoded config.

Risks of system failures 
due to technical debts. 
Delayed development of 
new features due to 
maintainability.



Recommendations

• Numbered, categorized, prioritized, and detailized.

Ref Criteria Description Priority Potential impact

R1 Security

Review and strengthen registration and login flow. Multiple exploits 
discovered - account takeover, brute forcing password/OTP due to 
lack of rate limit, identifying valid users based on error messages 
(e.g., "User not found") and responses (e.g., return user's phone 
number when found), weak passwords.

High

User account 
takeover
or unauthorized 
access.

R2 Security
Add passwords for newly registered users in combination with OTP. 
Enforce some quality on the passwords, e.g., minimum 8 symbols, 
containing both letters and numbers.

High

2FA. Prevent 
sending events to
external services 
and customers.

R3 Security Expire OTP tokens to avoid brute force attacks. High
Brute force 
attack against 
numerical codes.



 Lessons learned – tailor to the audience



 Lessons learned – gain attention via visuals



 Lessons learned – engage key stakeholders early



 Lessons learned – balance static & dynamic content



 Lessons learned – save time for follow-ups



Conclusion

• An exhaustive and systematic 
approach to evaluate projects

• Allowing (somewhat) 
external perspective

• Targeting both business and 
dev key figures



Questions



Thanks!

petyo.dimitrov@gmail.comwww.linkedin.com/in/
petyo-dimitrov


	Default Section
	Slide 1: 9 Criteria to Assess Your Project's Maturity  & Improve
	Slide 2: About me
	Slide 3: Agenda
	Slide 4: What is (technical) maturity?
	Slide 5: Why does it matter?
	Slide 6: Why 9 criteria?
	Slide 7
	Slide 8: Methodology – Kick-off meeting(s)
	Slide 9: Methodology – Review provided materials
	Slide 10: Methodology – Populate checklist
	Slide 11: Security (1/9)
	Slide 12: Security (1/9)
	Slide 13: Code quality (2/9)
	Slide 14: Deployability (3/9)
	Slide 15: Testability (4/9)
	Slide 16: Operability (5/9)
	Slide 17: Integration (6/9)
	Slide 18: Cloud capability (7/9)
	Slide 19: Processes (8/9)
	Slide 20: 3rd-party dependencies (9/9)
	Slide 21: Results – Template
	Slide 22: 1-page summary – radio chart
	Slide 23: 1-page summary – colored highlights
	Slide 24: Recommendations
	Slide 25:    Lessons learned – tailor to the audience
	Slide 26:    Lessons learned – gain attention via visuals
	Slide 27:    Lessons learned – engage key stakeholders early
	Slide 28:    Lessons learned – balance static & dynamic content
	Slide 29:    Lessons learned – save time for follow-ups
	Slide 30: Conclusion
	Slide 31: Questions
	Slide 32: Thanks!


