
Horacio Gonzalez
@LostInBrittany

Kubernetes for
Java Developers

Who are we?
Introducing myself and

introducing OVH OVHcloud

Horacio Gonzalez

@LostInBrittany
Spaniard lost in Brittany,
developer, dreamer and
all-around geek

Flutter

OVHcloud: A Global Leader

Own
20Tbps
Netwok

with
35 PoPs

> 1.3M Customers in 138 Countries

Hosting capacity :
1.3M Physical

Servers

360k
Servers already

deployed

30 Datacenters 1 Dedicated IaaS
Europe

200k Private cloud
VMs running

OVHcloud: Our solutions

Cloud
Web
Hosting

▪ Dedicated Server

▪ Data Storage

▪ Network and

Security

▪ Licences

Mobile
Hosting Telecom

 VoIP

SMS/Fax

Virtual desktop

Cloud Storage

Over the Box

 Containers

 Compute

 Database

 Object Storage

Securities

 Messaging

VPS

Public Cloud

Private Cloud

Serveur dédié

Cloud Desktop

Hybrid Cloud

Domain names

 Email

 CDN

Web hosting

MS Office

 MS solutions

Orchestrating containers
Like herding cats… but in hard mode!

From bare metal to containers

Another paradigm shift

Containers are easy…

For developers

Less simple if you must operate them

Like in a production context

And what about microservices?

Are you sure you want to operate them by hand?

Taming microservices with Kubernetes

Kubernetes is modular

Kubernetes
Way more than a buzzword!

Masters and nodes

Some more details

Desired State Management

Multi-environment made easy
Dev, staging, prod, multi-cloud...

Declarative infrastructure

Multi-environment made easy

Having identical, software defined envs

I have deployed on Minikube, woah!
A great fastlane into Kubernetes

Running a full K8s in your laptop

A great learning tool

Your laptop isn't a true cluster

Don't expect real performances

Beyond the first deployment

So I have deployed my distributed architecture on
K8s, everything is good now, isn't it?

Minikube is only the beginning

GraalVM
An alternative JVM with a twist

A long time ago, when the JVM was young

HotSpot becomes the offical JVM in Java 1.3

HotSpot has tiered compilation

It starts in interpreter mode, then C1 JIT
and, if needed, C2 JIT

Really powerful, really complex

Last big addition: JVM Intrinsics

It worked really well, but its getting old...

C++ stack, old code base, difficult to maintain

The Java platform to the rescue

JVM Compiler Interface (JVMCI) - JEP 243
Ahead of Time (AoT) Compilation - JEP 295

Graal project

An Oracle project to rethink the JVM

Graal compiler

● A Java compiler written in Java
○ Capable of compiling itself!

● Independent of HotSpot
○ Can be used in HotSpot with JVMCI

● Can do either JIT or AOT compilations

What's GraalVM?

A standalone Java Development Kit to execute:

● JVM-based languages

● Dynamic languages

● LLVM-based languages

What's GraalVM?

What's GraalVM?

GraalVM Features

GraalVM lets you:
● Run your code faster and more efficiently
● Interoperate directly with most modern

programming languages
● Embed languages with the GraalVM SDK
● Create compiled native images
● Use a single set of tools to monitor, debug, and

profile all your code

GraalVM base package

The base installation includes:

● The JVM

● The Graal compiler

● The LLVM bitcode interpreter

● The JavaScript runtime

Why GraalVM?

For Java programs:

● Run Java faster

● Make Your Application Extensible

● Create a Native Image

Why GraalVM?

For JavaScript programs:

● Reuse Libraries from Java, R, or Python

● Run with Large Heaps

● Define Data Structures in C/C++

Why GraalVM?

GraalVM native images reduce:

● Runtime memory footprint

● Startup time

And how does it compile ?

Dead code elimination
Closed world assumption

Adding some limitations...

Two versions

Community Edition & Enterprise Edition

Polyglot GraalVM
Wasm, JS, Ruby, Python, R, C, C++, Rust…

Sulong and Truffle

Lots of languages… and growing!

Running JavaScript code
function sayHello() {
 console.log('Hello!');
}

sayHello();

Using GraalVM js command
$ ~/opt/graalvm/bin/js sayHello.js
Hello!

Running NodeJS code
const http = require("http");
const span = require("ansispan");
require("colors");

http.createServer(function (request, response) {
 response.writeHead(200, {"Content-Type": "text/html"});
 response.end(span("Hello Graal.js!".green));
}).listen(8000, function() {
 console.log("Graal.js server running at http://127.0.0.1:8000/".red);
});

Using GraalVM node and npm commands
$ ~/opt/graalvm/bin/npm install colors ansispan
[...]
+ colors@1.4.0
+ ansispan@0.0.4
added 2 packages from 3 contributors in 14.951s
$ ~/opt/graalvm/bin/node helloNode.js
Graal.js server running at http://127.0.0.1:8000/

Running WebAssembly Programs
#include <stdio.h>

int main() {
 int number = 1;
 int rows = 10;
 for (int i = 1; i <= rows; i++) {
 for (int j = 1; j <= i; j++) {
 printf("%d ", number);
 ++number;
 }
 printf(".\n");
 }
 return 0;
}

Using wasm launcher
graalvm/bin/wasm --Builtins=memory,env:emscripten your_module.wasm

Embedding WebAssembly Programs
import org.graalvm.polyglot.*;
import org.graalvm.polyglot.io.ByteSequence;

// You need to load the .wasm contents into a byte array.
byte[] binary = readBytes("example.wasm");

Source.Builder sourceBuilder =
 Source.newBuilder("wasm", ByteSequence.create(binary), "example");
Source source = sourceBuilder.build();

Context.Builder contextBuilder = Context.newBuilder("wasm");
Context context = contextBuilder.build();
context.eval(source);

Value mainFunction = context.getBindings("wasm").getMember("_main");
mainFunction.execute();

GraalVM 💗 Kubernetes
Giving Java a place in a Cloud Native world

Containers didn't love Java

Big images, slow to start, memory hungry...

GraalVM change things

Small images, fast start, low memory footprint

Java is now a real alternative in Cloud Native

First class cloud player!

But what about old apps?

Most of them difficult to compile in GraalVM

Enter Quarkus

A new generation Java app stack

Quarkus
Supersonic Subatomic Java

What's Quarkus?

● A Kubernetes Native Java stack
● Tailored for OpenJDK HotSpot and GraalVM
● Crafted from the best of breed Java libraries and

standards

Container first

Unifies imperative and reactive

Combine imperative code and
the non-blocking reactive style

By developers, for developers

● Unified configuration
● Zero config, live reload in the blink of an eye
● Streamlined code for the 80% common usages,

flexible for the 20%
● No hassle native executable generation

Leveraging the ecosystem

Over fifty best-of-breed libraries
wired on a standard backbone

Conclusion
That's all, folks!

