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.NET Core Overview

• Open-sourced (MIT)

• Cross-platform

• Portable

• Modular

• "CLI first“

• Performance

• A “Reboot”



Vision

• “The audience is the 15-year-old girl who went 
to a hackathon… so then fast forward 10 or 15 
years, when that 15-year-old girl starts 
facebook v2- .net's in the running”

-- Scott Hanselman

• “We need to get those things right to enable 
the next 5, 10, 15 years of innovation on .net”

-- Damian Edwards



Open-sourced (MIT)

• https://github.com/dotnet/core (Samples)

• https://github.com/dotnet/coreclr (Runtime)

• https://github.com/dotnet/corefx (Libraries)

• https://github.com/dotnet/cli (Command Line)

• .NET Core Design Reviews Videos

https://github.com/dotnet/core
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/cli
https://www.youtube.com/channel/UCaFP8iQMTuPXinXBMEXsSuw/videos
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Cross-platform



Modular & Portable

• Application-local model instead of a
Machine-wide model

• Enables releasing updates in a much more agile 
fashion

• Blogpost: Introducing .NET Core

https://blogs.msdn.microsoft.com/dotnet/2014/12/04/introducing-net-core/


Bye Bye GAC (Global Assembly Cache)



What’s missing

• System.Data (partly)

• System.Drawing

• System.Xml.Xsl

• System.Xml.Schema

• System.Net.Mail

• System.IO.Ports

• … and more

• Blogpost: Porting to .NET Core

https://blogs.msdn.microsoft.com/dotnet/2016/02/10/porting-to-net-core/


NuGet

• The primary experience for
references and dependencies

• No difference between 1st

party .net dependencies
and 3rd party
dependencies

• .NET Core is made up of
many NuGet packages



NuGet

• Use the right tool for the right job
• NuGet is for .net code

• NPM \ Bower is for scripts (jQuery, Angular, etc.)

• GUI-less, autocomplete, auto download mode



Updating dependencies



Updating dependencies



Future of dependencies in VS



Bye Bye .csproj



project.json

Replaces .csproj file

• JSON instead of XML

• All files in the dir are part of the project by 
default

• Supports globbing



project.json

• Dependencies (NuGet, other projects)

• Frameworks

• Docs: Project.json file

https://github.com/aspnet/Home/wiki/Project.json-file


CLI First

• Use whatever IDE \ Editor
you want using OmniSharp

• Build and run with the dotnet CLI tool

• Getting started with .NET Core

https://dotnet.github.io/getting-started/


DEMO
Hello World



Offtopic: .NET Native

• A tool to compile IL bytecode into native 
machine code Ahead of Time (AOT)

• Great performance implications

• In the early stages of development

• About: .NET Ecosystem

• Github: .NET Core Runtime (CoreRT)

https://dotnet.github.io/about/overview.html#net-native
https://github.com/dotnet/corert


ASP.NET Core 1.0

• Open-sourced (Apache)

• Cross-platform

• Portable

• Modular

• "CLI first“

• Performance



Open-sourced

• https://github.com/aspnet/Home

• https://github.com/aspnet/Mvc

• https://github.com/aspnet/DependencyInjection

• https://github.com/aspnet/Razor

• https://github.com/aspnet/EntityFramework

• https://github.com/aspnet/Identity

• https://github.com/aspnet/diagnostics/

• https://github.com/aspnet/configuration

• https://github.com/aspnet/Hosting

• https://github.com/aspnet/StaticFiles

• https://github.com/aspnet/ResponseCaching

• https://github.com/aspnet/KestrelHttpServer

• ASP.NET Community Standup

https://github.com/aspnet/Home
https://github.com/aspnet/Mvc
https://github.com/aspnet/DependencyInjection
https://github.com/aspnet/Razor
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/Identity
https://github.com/aspnet/diagnostics/
https://github.com/aspnet/StaticFiles
https://github.com/aspnet/StaticFiles
https://github.com/aspnet/StaticFiles
https://github.com/aspnet/ResponseCaching
https://github.com/aspnet/KestrelHttpServer
https://www.youtube.com/playlist?list=PL0M0zPgJ3HSftTAAHttA3JQU4vOjXFquF


Open-sourced



ASP.NET Core 1.0

• Compatible with both .NET Core and .NET 
Framework 4.6

• Not tied to IIS

• MVC and Web API Unification

• Middleware

• New Configuration model

• Built-in Dependency Injection

• Tag Helpers



Run ASP.NET Core, Run



What’s missing

• SignalR

• WebForms

• Visual Basic support

• F# support



DEMO
Empty Web Application



Middleware

• A Request\Response handling component

• When put together they make up your
HTTP request handling pipeline

• The order in which you set up your middleware 
matters! It matches the order your Request 
delegate will be called



Middleware

• Docs: Middleware

https://docs.asp.net/en/latest/fundamentals/middleware.html


Middleware Everywhere!

• Almost all of the ASP.NET functionality is now 
implemented as Middleware
(e.g. Exception Handling, Static Files, Authentication, 
MVC, etc.)

• Which means that
• You can choose whether or not to use

• Modify (since it’s modular & open source)



Bye Bye HTTP Handlers
&HTTP Modules

• Docs: Migrating HTTP Modules to Middleware

https://docs.asp.net/en/latest/migration/http-modules.html


wwwroot

• The root of the web app is now
different than the root of the project

• By default, the web app root folder
is called wwwroot (configurable),
and it’s under the project root folder

• Helps you protect sensitive files



DEMO
Web Application



Startup class

• When your app start it will look for
a Startup class to instantiate

• And it will look for the Configure and 
ConfigureServices methods to call

• Startup constructor – set up Configuration

• Configure – set up Middleware

• ConfigureServices – set up Service injection

• Source Code: StartupLoader

https://github.com/aspnet/Hosting/blob/b7bdc9c40494f8e0f0eac22db91b8d5c58811ee2/src/Microsoft.AspNetCore.Hosting/Startup/StartupLoader.cs


Environment Variables



Configuration

• The new configuration model provides is based 
on access to key/value pair that can be 
retrieved from a variety of providers
• In memory

• JSON file

• Environment variables

• XML file

• Command line parameters

• Custom (inherit from ConfigurationProvider)

• Docs: Configuration

https://docs.asp.net/en/latest/fundamentals/configuration.html


Bye Bye web.config



Configuration

The order of providers matters



Secret Manager

• Helps store sensitive data outside of your 
project tree

• Intended for use in Development mode only
• Does not encrypt the stored secrets

• On Windows it’s stored at
%APPDATA%\microsoft\UserSecrets\<userSecretsId>\secrets.json

• Docs: Safe Storage of Application Secrets

https://docs.asp.net/en/latest/security/app-secrets.html


Nested Configuration



Dependency Injection

• Dependency Injection is a technique for 
achieving loose coupling between classes

• ASP.NET 5 is designed from the ground up to 
support and leverage dependency injection

• Blogpost: Dependency Injection in ASP.NET Core

https://blogs.msdn.microsoft.com/webdev/2016/03/28/dependency-injection-in-asp-net-core/


Dependency Injection

• Supports Constructor Injection

• Available service lifetime configuration
• Transient

• Scoped

• Singleton

• Instance

• Docs: Dependency Injection

https://docs.asp.net/en/latest/fundamentals/dependency-injection.html


Dependency Injection

• The built-in container provides a minimal 
feature set and is not intended to replace other 
containers

• Does not support
• Registering by convention

• Multiple implementations
per interface

• Interceptors



Dependency Injection

• You can replace the built-in container with any 
container that also implements 
IServiceProvider

• Replace

with

• Autofac supports ASP.NET Core

http://docs.autofac.org/en/latest/integration/aspnetcore.html


Dynamic Development

• Dynamic compilation saves you time by 
removing the need to compile the app every 
time you change it

• Just edit, save, and refresh the browser.

• Use without Visual Studio using dotnet-watch

• Blogpost: Introducing ASP.NET 5

https://github.com/aspnet/dotnet-watch/
http://weblogs.asp.net/scottgu/introducing-asp-net-5


ASP- The story so far



MVC 6

• Unified stack for MVC and Web API apps

• It’s just middleware
• Routing

• Razor

• Serialization

• Source Code: AddMvc()

https://github.com/aspnet/Mvc/blob/574ecbb3ebfbb53697be3b1ad69a0a0232a548db/src/Microsoft.AspNetCore.Mvc/MvcServiceCollectionExtensions.cs


Routing

• MVC uses a generic Routing middleware
that can also be used without MVC

• Allows using inline constraints in MapRoute

(int, bool, datetime, float, guid, length, range, alpha, regex, required)

• Allows falling back to another route if a route 
handler decided it’s not relevant

• Docs: Routing

https://docs.asp.net/en/latest/fundamentals/routing.html


Injecting services into Views

• You can also inject services into Views
using the new @inject Razor directive

• Docs: Injecting Services Into Views

https://docs.asp.net/en/latest/mvc/views/dependency-injection.html


View Components

• Invoked from a View and returns a Partial View

• Includes the same separation-of-concerns and 
testability benefits found between a controller 
and view

• Docs: View Components

• Sample: TagHelperSample App

https://docs.asp.net/en/latest/mvc/views/view-components.html
https://github.com/aspnet/Mvc/tree/6.0.0-rc1/samples/TagHelperSample.Web


@await directive

• Now that we can inject Services and 
ViewComponents into our View,
we can potentially make the rendering much 
slower

• The new @await Razor directive lets you render 
a Partial in an asynchronous manner



FlushAsync

• Until today the Razor View Engine did not 
support flushing the HTTP response 
incrementally (Chunked Encoding)

• Now this is possible by calling

• Great for perceived performance

• Wikipedia: Chunked transfer encoding

https://en.wikipedia.org/wiki/Chunked_transfer_encoding


Tag Helpers



Tag Helpers

• Everything looks like HTML
• Plays nicely with syntax highlighting everywhere

• But Tag Helpers aware tools (like VS) understand 
what’s not just HTML and provide extra intellisense

• Attribute Tag Helpers render only some of the 
HTML attributes, not the entire element
• You can use HTML to write HTML

• Docs: Introduction to Tag Helpers

https://docs.asp.net/en/latest/mvc/views/tag-helpers/intro.html


Tag Helpers

• Attribute Tag Helpers
• @Html.ActionLink → <a asp-section>

• @Html.BeginForm → <form asp-controller>

• @Html.LabelFor → <label asp-for>

• Element Tag Helpers
• <environment>

Render the HTML within only in a certain env mode

• <cache>
Cache the rendered HTML within



Tag Helpers

• Write your own Tag Helpers!

• Just implement the TagHelper class

• Docs: Authoring Tag Helpers

• Sample: TagHelperSamples

https://docs.asp.net/en/latest/mvc/views/tag-helpers/authoring.html
http://taghelpersamples.azurewebsites.net/


Swagger

• Swagger is a spec that defines a standard way 
of documenting your public API

• Based on this Swagger tools can auto-generate 
documentation and language-specific SDKs

• Use the Swagger Nuget packages to generate 
an interactive documentation site for your Web 
API in seconds

https://www.nuget.org/profiles/domaindrivendev


Kestrel

• A new web server

• Open-sourced

• Cross-platform

• Better performance

• Based on libuv
• I/O library

(network, file system)

• Primarily developed for 
node.js



Kestrel



Kestrel

• Can run independently in production

• But it’s advised to run behind a different web 
server in a reverse-proxy model
• Windows: IIS

• Using the HttpPlatformHandler module

• Benefit from other IIS features (e.g. Windows Auth)

• Linux: NGINX

• Adding new features isn’t restricted by the host 
operating system (e.g. Websockets, HTTP 2.0)



2,300% More Requests/second 
compared to ASP.NET 4.6

https://twitter.com/scottgu/status/700549872726839296

https://twitter.com/scottgu/status/700549872726839296


KRE → DNX → dotnet CLI

• May 12, ‘14 - Introducing ASP.NET vNext (alpha)

• Nov 12, ‘14 - beta1 was released

• Nov 18, ‘15 - ASP.NET 5 RC1 (Release
Candidate 1) was released

• Jan 19, ‘16 - ASP.NET 5 is renamed
to ASP.NET Core 1.0

• Apr 14, ‘16 - Hanselman announces that RC2 is 
delayed in order to “re-plat”
on top of the new .NET Core CLI

http://www.hanselman.com/blog/IntroducingASPNETVNext.aspx
https://github.com/aspnet/Home/releases/tag/v1.0.0-beta1
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/AnUpdateOnASPNETCore10RC2.aspx


When to jump in?

Right now* at asp.net/vnext

* But know that you’re likely going to encounter 
out-of-date documentation (docs.asp.net),
and work-in-progress code

http://www.asp.net/vnext
https://docs.asp.net/


Playing

• https://github.com/aspnet/Home/
tree/dev/samples

• https://github.com/aspnet/cli-samples

• https://github.com/Microsoft-Build-
2016/CodeLabs-WebDev

• https://github.com/aspnet/MusicStore

https://github.com/aspnet/Home/tree/dev/samples
https://github.com/aspnet/cli-samples
https://github.com/Microsoft-Build-2016/CodeLabs-WebDev
https://github.com/aspnet/MusicStore
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Thank You!
@cowchimp


