
What's new in
ASP.NET Core 1.0

(Formerly known as ASP.NET 5)

Israel Dot NET Developers User Group

April 2016

Flashback from 2002

So what has changed?

Where’s Waldo?

Yonatan Mevorach

.NET Web Developer

at

.NET Core Overview

• Open-sourced (MIT)

• Cross-platform

• Portable

• Modular

• "CLI first“

• Performance

• A “Reboot”

Vision

• “The audience is the 15-year-old girl who went
to a hackathon… so then fast forward 10 or 15
years, when that 15-year-old girl starts
facebook v2- .net's in the running”

-- Scott Hanselman

• “We need to get those things right to enable
the next 5, 10, 15 years of innovation on .net”

-- Damian Edwards

Open-sourced (MIT)

• https://github.com/dotnet/core (Samples)

• https://github.com/dotnet/coreclr (Runtime)

• https://github.com/dotnet/corefx (Libraries)

• https://github.com/dotnet/cli (Command Line)

• .NET Core Design Reviews Videos

https://github.com/dotnet/core
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/cli
https://www.youtube.com/channel/UCaFP8iQMTuPXinXBMEXsSuw/videos

Open-sourced

• https://github.com/dotnet/core (Samples)

• https://github.com/dotnet/coreclr (Runtime)

• https://github.com/dotnet/corefx (Libraries)

• https://github.com/dotnet/cli (Command Line)

• .NET Core Design Reviews Videos

https://github.com/dotnet/core
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/cli
https://www.youtube.com/channel/UCaFP8iQMTuPXinXBMEXsSuw/videos

Cross-platform

Modular & Portable

• Application-local model instead of a
Machine-wide model

• Enables releasing updates in a much more agile
fashion

• Blogpost: Introducing .NET Core

https://blogs.msdn.microsoft.com/dotnet/2014/12/04/introducing-net-core/

Bye Bye GAC (Global Assembly Cache)

What’s missing

• System.Data (partly)

• System.Drawing

• System.Xml.Xsl

• System.Xml.Schema

• System.Net.Mail

• System.IO.Ports

• … and more

• Blogpost: Porting to .NET Core

https://blogs.msdn.microsoft.com/dotnet/2016/02/10/porting-to-net-core/

NuGet

• The primary experience for
references and dependencies

• No difference between 1st

party .net dependencies
and 3rd party
dependencies

• .NET Core is made up of
many NuGet packages

NuGet

• Use the right tool for the right job
• NuGet is for .net code

• NPM \ Bower is for scripts (jQuery, Angular, etc.)

• GUI-less, autocomplete, auto download mode

Updating dependencies

Updating dependencies

Future of dependencies in VS

Bye Bye .csproj

project.json

Replaces .csproj file

• JSON instead of XML

• All files in the dir are part of the project by
default

• Supports globbing

project.json

• Dependencies (NuGet, other projects)

• Frameworks

• Docs: Project.json file

https://github.com/aspnet/Home/wiki/Project.json-file

CLI First

• Use whatever IDE \ Editor
you want using OmniSharp

• Build and run with the dotnet CLI tool

• Getting started with .NET Core

https://dotnet.github.io/getting-started/

DEMO
Hello World

Offtopic: .NET Native

• A tool to compile IL bytecode into native
machine code Ahead of Time (AOT)

• Great performance implications

• In the early stages of development

• About: .NET Ecosystem

• Github: .NET Core Runtime (CoreRT)

https://dotnet.github.io/about/overview.html#net-native
https://github.com/dotnet/corert

ASP.NET Core 1.0

• Open-sourced (Apache)

• Cross-platform

• Portable

• Modular

• "CLI first“

• Performance

Open-sourced

• https://github.com/aspnet/Home

• https://github.com/aspnet/Mvc

• https://github.com/aspnet/DependencyInjection

• https://github.com/aspnet/Razor

• https://github.com/aspnet/EntityFramework

• https://github.com/aspnet/Identity

• https://github.com/aspnet/diagnostics/

• https://github.com/aspnet/configuration

• https://github.com/aspnet/Hosting

• https://github.com/aspnet/StaticFiles

• https://github.com/aspnet/ResponseCaching

• https://github.com/aspnet/KestrelHttpServer

• ASP.NET Community Standup

https://github.com/aspnet/Home
https://github.com/aspnet/Mvc
https://github.com/aspnet/DependencyInjection
https://github.com/aspnet/Razor
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/Identity
https://github.com/aspnet/diagnostics/
https://github.com/aspnet/StaticFiles
https://github.com/aspnet/StaticFiles
https://github.com/aspnet/StaticFiles
https://github.com/aspnet/ResponseCaching
https://github.com/aspnet/KestrelHttpServer
https://www.youtube.com/playlist?list=PL0M0zPgJ3HSftTAAHttA3JQU4vOjXFquF

Open-sourced

ASP.NET Core 1.0

• Compatible with both .NET Core and .NET
Framework 4.6

• Not tied to IIS

• MVC and Web API Unification

• Middleware

• New Configuration model

• Built-in Dependency Injection

• Tag Helpers

Run ASP.NET Core, Run

What’s missing

• SignalR

• WebForms

• Visual Basic support

• F# support

DEMO
Empty Web Application

Middleware

• A Request\Response handling component

• When put together they make up your
HTTP request handling pipeline

• The order in which you set up your middleware
matters! It matches the order your Request
delegate will be called

Middleware

• Docs: Middleware

https://docs.asp.net/en/latest/fundamentals/middleware.html

Middleware Everywhere!

• Almost all of the ASP.NET functionality is now
implemented as Middleware
(e.g. Exception Handling, Static Files, Authentication,
MVC, etc.)

• Which means that
• You can choose whether or not to use

• Modify (since it’s modular & open source)

Bye Bye HTTP Handlers
&HTTP Modules

• Docs: Migrating HTTP Modules to Middleware

https://docs.asp.net/en/latest/migration/http-modules.html

wwwroot

• The root of the web app is now
different than the root of the project

• By default, the web app root folder
is called wwwroot (configurable),
and it’s under the project root folder

• Helps you protect sensitive files

DEMO
Web Application

Startup class

• When your app start it will look for
a Startup class to instantiate

• And it will look for the Configure and
ConfigureServices methods to call

• Startup constructor – set up Configuration

• Configure – set up Middleware

• ConfigureServices – set up Service injection

• Source Code: StartupLoader

https://github.com/aspnet/Hosting/blob/b7bdc9c40494f8e0f0eac22db91b8d5c58811ee2/src/Microsoft.AspNetCore.Hosting/Startup/StartupLoader.cs

Environment Variables

Configuration

• The new configuration model provides is based
on access to key/value pair that can be
retrieved from a variety of providers
• In memory

• JSON file

• Environment variables

• XML file

• Command line parameters

• Custom (inherit from ConfigurationProvider)

• Docs: Configuration

https://docs.asp.net/en/latest/fundamentals/configuration.html

Bye Bye web.config

Configuration

The order of providers matters

Secret Manager

• Helps store sensitive data outside of your
project tree

• Intended for use in Development mode only
• Does not encrypt the stored secrets

• On Windows it’s stored at
%APPDATA%\microsoft\UserSecrets\<userSecretsId>\secrets.json

• Docs: Safe Storage of Application Secrets

https://docs.asp.net/en/latest/security/app-secrets.html

Nested Configuration

Dependency Injection

• Dependency Injection is a technique for
achieving loose coupling between classes

• ASP.NET 5 is designed from the ground up to
support and leverage dependency injection

• Blogpost: Dependency Injection in ASP.NET Core

https://blogs.msdn.microsoft.com/webdev/2016/03/28/dependency-injection-in-asp-net-core/

Dependency Injection

• Supports Constructor Injection

• Available service lifetime configuration
• Transient

• Scoped

• Singleton

• Instance

• Docs: Dependency Injection

https://docs.asp.net/en/latest/fundamentals/dependency-injection.html

Dependency Injection

• The built-in container provides a minimal
feature set and is not intended to replace other
containers

• Does not support
• Registering by convention

• Multiple implementations
per interface

• Interceptors

Dependency Injection

• You can replace the built-in container with any
container that also implements
IServiceProvider

• Replace

with

• Autofac supports ASP.NET Core

http://docs.autofac.org/en/latest/integration/aspnetcore.html

Dynamic Development

• Dynamic compilation saves you time by
removing the need to compile the app every
time you change it

• Just edit, save, and refresh the browser.

• Use without Visual Studio using dotnet-watch

• Blogpost: Introducing ASP.NET 5

https://github.com/aspnet/dotnet-watch/
http://weblogs.asp.net/scottgu/introducing-asp-net-5

ASP- The story so far

MVC 6

• Unified stack for MVC and Web API apps

• It’s just middleware
• Routing

• Razor

• Serialization

• Source Code: AddMvc()

https://github.com/aspnet/Mvc/blob/574ecbb3ebfbb53697be3b1ad69a0a0232a548db/src/Microsoft.AspNetCore.Mvc/MvcServiceCollectionExtensions.cs

Routing

• MVC uses a generic Routing middleware
that can also be used without MVC

• Allows using inline constraints in MapRoute

(int, bool, datetime, float, guid, length, range, alpha, regex, required)

• Allows falling back to another route if a route
handler decided it’s not relevant

• Docs: Routing

https://docs.asp.net/en/latest/fundamentals/routing.html

Injecting services into Views

• You can also inject services into Views
using the new @inject Razor directive

• Docs: Injecting Services Into Views

https://docs.asp.net/en/latest/mvc/views/dependency-injection.html

View Components

• Invoked from a View and returns a Partial View

• Includes the same separation-of-concerns and
testability benefits found between a controller
and view

• Docs: View Components

• Sample: TagHelperSample App

https://docs.asp.net/en/latest/mvc/views/view-components.html
https://github.com/aspnet/Mvc/tree/6.0.0-rc1/samples/TagHelperSample.Web

@await directive

• Now that we can inject Services and
ViewComponents into our View,
we can potentially make the rendering much
slower

• The new @await Razor directive lets you render
a Partial in an asynchronous manner

FlushAsync

• Until today the Razor View Engine did not
support flushing the HTTP response
incrementally (Chunked Encoding)

• Now this is possible by calling

• Great for perceived performance

• Wikipedia: Chunked transfer encoding

https://en.wikipedia.org/wiki/Chunked_transfer_encoding

Tag Helpers

Tag Helpers

• Everything looks like HTML
• Plays nicely with syntax highlighting everywhere

• But Tag Helpers aware tools (like VS) understand
what’s not just HTML and provide extra intellisense

• Attribute Tag Helpers render only some of the
HTML attributes, not the entire element
• You can use HTML to write HTML

• Docs: Introduction to Tag Helpers

https://docs.asp.net/en/latest/mvc/views/tag-helpers/intro.html

Tag Helpers

• Attribute Tag Helpers
• @Html.ActionLink → <a asp-section>

• @Html.BeginForm → <form asp-controller>

• @Html.LabelFor → <label asp-for>

• Element Tag Helpers
• <environment>

Render the HTML within only in a certain env mode

• <cache>
Cache the rendered HTML within

Tag Helpers

• Write your own Tag Helpers!

• Just implement the TagHelper class

• Docs: Authoring Tag Helpers

• Sample: TagHelperSamples

https://docs.asp.net/en/latest/mvc/views/tag-helpers/authoring.html
http://taghelpersamples.azurewebsites.net/

Swagger

• Swagger is a spec that defines a standard way
of documenting your public API

• Based on this Swagger tools can auto-generate
documentation and language-specific SDKs

• Use the Swagger Nuget packages to generate
an interactive documentation site for your Web
API in seconds

https://www.nuget.org/profiles/domaindrivendev

Kestrel

• A new web server

• Open-sourced

• Cross-platform

• Better performance

• Based on libuv
• I/O library

(network, file system)

• Primarily developed for
node.js

Kestrel

Kestrel

• Can run independently in production

• But it’s advised to run behind a different web
server in a reverse-proxy model
• Windows: IIS

• Using the HttpPlatformHandler module

• Benefit from other IIS features (e.g. Windows Auth)

• Linux: NGINX

• Adding new features isn’t restricted by the host
operating system (e.g. Websockets, HTTP 2.0)

2,300% More Requests/second
compared to ASP.NET 4.6

https://twitter.com/scottgu/status/700549872726839296

https://twitter.com/scottgu/status/700549872726839296

KRE → DNX → dotnet CLI

• May 12, ‘14 - Introducing ASP.NET vNext (alpha)

• Nov 12, ‘14 - beta1 was released

• Nov 18, ‘15 - ASP.NET 5 RC1 (Release
Candidate 1) was released

• Jan 19, ‘16 - ASP.NET 5 is renamed
to ASP.NET Core 1.0

• Apr 14, ‘16 - Hanselman announces that RC2 is
delayed in order to “re-plat”
on top of the new .NET Core CLI

http://www.hanselman.com/blog/IntroducingASPNETVNext.aspx
https://github.com/aspnet/Home/releases/tag/v1.0.0-beta1
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/AnUpdateOnASPNETCore10RC2.aspx

When to jump in?

Right now* at asp.net/vnext

* But know that you’re likely going to encounter
out-of-date documentation (docs.asp.net),
and work-in-progress code

http://www.asp.net/vnext
https://docs.asp.net/

Playing

• https://github.com/aspnet/Home/
tree/dev/samples

• https://github.com/aspnet/cli-samples

• https://github.com/Microsoft-Build-
2016/CodeLabs-WebDev

• https://github.com/aspnet/MusicStore

https://github.com/aspnet/Home/tree/dev/samples
https://github.com/aspnet/cli-samples
https://github.com/Microsoft-Build-2016/CodeLabs-WebDev
https://github.com/aspnet/MusicStore

IMHO

Others
The
Bad

Parts

ASP.NET
The
Bad

Parts

ASP.NET
Core

Thank You!
@cowchimp

