
The How and Why of
OpenAPI

Rob Allen

Web Summer Camp, July 2024

APIs Power the Internet

Rob Allen ~ @akrabat

There's not much that gets done on the Internet that doesn't use an API

They are how we develop software today. We both consume APIs and create them

APIs Power the Internet
API Descriptions Power APIs

Rob Allen ~ @akrabat

Using API Descriptions like OpenAPI, we enable better worflows

Today, I'm going to talk about the why and the what ofOpenAPI

and how an OpenAPI spec can be the centre of your API development

The OpenAPI Specification (OAS) defines a standard,
programming language-agnostic interface description
for HTTP APIs, which allows both humans and
computers to discover and understand the
capabilities of a service

https://spec.openapis.org/oas/latest.html

Rob Allen ~ @akrabat

https://spec.openapis.org/oas/latest.html
Machine readable API description with lots of usage

The OpenAPI is an open standard, as in not owned by any one company & is a collaboration

It's about
documentation

Rob Allen ~ @akrabat

Can document all sorts of APIs, including webhooks

endpoints: verb, parameters, request bodies, responses

Also contains examples

It's about
design-first

Rob Allen ~ @akrabat

But can be used for any API

Everyone can contribute to the design

creates a sense of a level playing field for all stakeholders

see https://blog.stoplight.io/api-first-api-design-first-or-code-first-which-should-you-choose

It's about
communicating changes

Rob Allen ~ @akrabat

Plain text format allows diffing

Render to HTML directly from spec file

It's about
development workflows

Rob Allen ~ @akrabat

Linters

Mock servers for testing before code written

Import to PostMan, Paw or other HttpClient

It's about
standardisation

Rob Allen ~ @akrabat

Reduce the time spent by integrators understanding your API

It's about
a contract

Rob Allen ~ @akrabat

An agreement between all stakeholders on how an API's requests and responses are structured.

Machine readable API description

endpoints: verb, parameters, request bodies, responses, examples

Can document all sorts of APIs, including webhooks

"Using a consistent API description will help
increase adoption of APIs across
government by reducing time spent in
understanding different APIs.

gov.uk

Rob Allen ~ @akrabat

Anatomy of the
specification

Rob Allen ~ @akrabat

openapi.yaml
openapi: "3.1.0"
info: # ...
servers: # ...
paths: # ...
webhooks: # ...
components: # ...
security: # ...
tags: # ...
externalDocs: # ...

Rob Allen ~ @akrabat

Metadata
info:
 title: Rock-Paper-Scissors
 version: "1.0.0"
 description: An implementation of Rock-Paper-Scissors.
 contact:
 name: "Rob Allen"
 license:
 name: The MIT License

servers:
 - url: https://rock-paper-scissors.example.com
 description: "RPS production API"

Rob Allen ~ @akrabat

Useful for your clients, particularly version, contact, servers.

Also for directories when people are searching for APIs that do the thing they need

Endpoints
paths:
 '/games':
 get:
 # ...
 post:
 # ...
 '/games/{game_id}/moves':
 post:
 # ...
 '/games/{game_id}/judgement':
 get:
 # ...

Rob Allen ~ @akrabat

In the paths key we specify our end points

This API has 3 endpoints and 4 operations as we can get and post to /games

As you can start to imagine, an Open API spec file can get quite long

Endpoints
paths:
 '/games':
 post:
 operationId: createGame
 summary: Create a new game
 description: Create a new game of Rock-Paper-Scissors.
 requestBody:
 # ...
 responses:
 # ...

Rob Allen ~ @akrabat

Let's look at an individual operation and I've picked creating a new game

Endpoints
paths:
 '/games':
 post:
 operationId: createGame
 summary: Create a new game
 description: Create a new game of Rock-Paper-Scissors.
 requestBody:
 # ...
 responses:
 # ...

Rob Allen ~ @akrabat

This is our path. In this case, If it has a dynamic portion such as

the game ID, then that is surrounded in braces

Endpoints
paths:
 '/games':
 post:
 operationId: createGame
 summary: Create a new game
 description: Create a new game of Rock-Paper-Scissors.
 requestBody:
 # ...
 responses:
 # ...

Rob Allen ~ @akrabat

Which method are we describing? This one is a POST

Endpoints
paths:
 '/games':
 post:
 operationId: createGame
 summary: Create a new game
 description: Create a new game of Rock-Paper-Scissors.
 requestBody:
 # ...
 responses:
 # ...

Rob Allen ~ @akrabat

This is the meat. We have meta info, then the practical data

Name your operationID with care! It's used in all sorts of places

such as anchors in documents, method names in generated code, etc

As this is a POST, we define the requestBody. For a GEt we'd describe parameters

We also declare the responses that a client can expect from this operation

RequestBody
 requestBody:
 description: Game to add
 required: true
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/NewGameRequest'

Rob Allen ~ @akrabat

RequestBody
 requestBody:
 description: Game to add
 required: true
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/NewGameRequest'

Rob Allen ~ @akrabat

Again, we have a description. OpenAPI is nothing if not comprehensive, which is useful later

Also we note that we don't accept a POST request with no body - it defaults to false

RequestBody
 requestBody:
 description: Game to add
 required: true
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/NewGameRequest'

Rob Allen ~ @akrabat

What content in which format should you supply?

In this, case we use a reference!

This is a pointer to the information that goes here, either in this file or in another one

Consider this compiler-assisted copy and paste!

Reuse of objects
$ref allows us to define once & use in many places
components:
 schemas:
 GameId:
 type: string
 format: "uuid"
 examples:
 - "2BC08389-885A-4322-80D0-EF0DE2D7CD37"
 Player:
 type: string
 example: "Lucy"

Rob Allen ~ @akrabat

We define our referenced blocks in the components key

Within components we have separate keys for each separate type of thing we're defining

e.g. schemas for input & output data types which is what I have here

There's also parameters, requestBodies, responses, examples, headers, links, etc

Reuse of objects
$ref allows us to define once & use in many places
components:
 schemas:
 GameId:
 type: string
 format: "uuid"
 examples:
 - "2BC08389-885A-4322-80D0-EF0DE2D7CD37"
 Player:
 type: string
 example: "Lucy"

Rob Allen ~ @akrabat

I have two separate schemas here, GameId and...

>CLICK THROUGH TO SHOW PLAYER<

Reuse of objects
$ref allows us to define once & use in many places
components:
 schemas:
 GameId:
 type: string
 format: "uuid"
 examples:
 - "2BC08389-885A-4322-80D0-EF0DE2D7CD37"
 Player:
 type: string
 example: "Lucy"

Rob Allen ~ @akrabat

Palyer ID

As you can imagine, these are fundamentals and reused everywhere

>CLICK THROUGH TO LOOK AT GAME ID<

Reuse of objects
$ref allows us to define once & use in many places
components:
 schemas:
 GameId:
 type: string
 format: "uuid"
 examples:
 - "2BC08389-885A-4322-80D0-EF0DE2D7CD37"
 Player:
 type: string
 example: "Lucy"

Rob Allen ~ @akrabat

So, if we look at the GameId component

>CLICK THROUGH TO LOOK AT DETAIL<

Reuse of objects
$ref allows us to define once & use in many places
components:
 schemas:
 GameId:
 type: string
 format: "uuid"
 examples:
 - "2BC08389-885A-4322-80D0-EF0DE2D7CD37"
 Player:
 type: string
 example: "Lucy"

Rob Allen ~ @akrabat

Each component has a type - string in this case

For a string, we can specify its format: UUID

This is the place where all the rules are defined. E.g. is a number

length limits, negative allowed, date format accepted, etc

We can document it in detail, once!

For some components, there's a format. Strings can be UUIDs

and must be in this case

Reuse of objects
$ref allows us to define once & use in many places
components:
 schemas:
 GameId:
 type: string
 format: "uuid"
 examples:
 - "2BC08389-885A-4322-80D0-EF0DE2D7CD37"
 Player:
 type: string
 example: "Lucy"

Rob Allen ~ @akrabat

You can also specify an example. This is useful for documentation

and tooling, such as mock servers.

Build on top of other components
 schemas:
 NewGameRequest:
 properties:
 player1:
 $ref: '#/components/schemas/Player'
 player2:
 $ref: '#/components/schemas/Player'
 required:
 - player1
 - player2
 examples:
 - '{"player1":"Lucy", "player2":"Dave"}'

Rob Allen ~ @akrabat

Build on top of other components
 schemas:
 NewGameRequest:
 properties:
 player1:
 $ref: '#/components/schemas/Player'
 player2:
 $ref: '#/components/schemas/Player'
 required:
 - player1
 - player2
 examples:
 - '{"player1":"Lucy", "player2":"Dave"}'

Rob Allen ~ @akrabat

So if we go back to our NewGameRequest

This is a schema component that represents the request body to be sent

to create a new game. It builds on the components we have already built.

Build on top of other components
 schemas:
 NewGameRequest:
 properties:
 player1:
 $ref: '#/components/schemas/Player'
 player2:
 $ref: '#/components/schemas/Player'
 required:
 - player1
 - player2
 examples:
 - '{"player1":"Lucy", "player2":"Dave"}'

Rob Allen ~ @akrabat

A request body has a properties. In this case we need 2 players to play our game

and each one uses the Player component we saw earlier.

Build on top of other components
 schemas:
 NewGameRequest:
 properties:
 player1:
 $ref: '#/components/schemas/Player'
 player2:
 $ref: '#/components/schemas/Player'
 required:
 - player1
 - player2
 examples:
 - '{"player1":"Lucy", "player2":"Dave"}'

Rob Allen ~ @akrabat

Again, we specify which properties are required. In this case both players are needed.

Build on top of other components
 schemas:
 NewGameRequest:
 properties:
 player1:
 $ref: '#/components/schemas/Player'
 player2:
 $ref: '#/components/schemas/Player'
 required:
 - player1
 - player2
 examples:
 - '{"player1":"Lucy", "player2":"Dave"}'

Rob Allen ~ @akrabat

And finally, we can provide an example for documentation.

RequestBody
 requestBody:
 description: Game to add
 required: true
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/NewGameRequest'

Rob Allen ~ @akrabat

Which brings us back to our Request body that I should you earlier

where we referenced our NewGameRequest in the requestBody for creating a game

Responses
 responses:
 '201':
 $ref: '#/components/responses/NewGameResponse'
 '400':
 $ref: '#/components/responses/NewGameError'
 '500':
 $ref: '#/components/responses/InternalServerError'

Rob Allen ~ @akrabat

Similarly, we need to specify what our client developer can expect in the response

Responses
 responses:
 '201':
 $ref: '#/components/responses/NewGameResponse'
 '400':
 $ref: '#/components/responses/NewGameError'
 '500':
 $ref: '#/components/responses/InternalServerError'

Rob Allen ~ @akrabat

We provide a response definition for each status code that we will return.

Responses
 responses:
 '201':
 $ref: '#/components/responses/NewGameResponse'
 '400':
 $ref: '#/components/responses/NewGameError'
 '500':
 $ref: '#/components/responses/InternalServerError'

Rob Allen ~ @akrabat

and in this case, we simply reference response components

You don't need to see the detail. As you can imagine, it's more YAML!

Arguably NewGameResponse and NewGameRequest aren't reusable, but makes the operation

easier to read.

The reusability is wonderful as it makes it easier to keep everything in sync.

Writing your spec

Rob Allen ~ @akrabat

That's a lot of YAML to write!

An OpenAPI spec can run to thousands of lines of code

Editing
It's just text!

Rob Allen ~ @akrabat

Just use an editor with plugins: vim, VS Code, etc

Syntax highlighting and folding certainly make it easy enough

I also quite like VSCode's outline view. PhpStorm has something similar on cmd+F12

You keep it in git anyway

Editing
GUI tools: Stoplight, OpenAPI-GUI, Swagger Editor

Rob Allen ~ @akrabat

Alternatively, use a GUI editor and build your spec this way

They are all two-way and edit the YAML behind the scenes

With Stoplight you get validation - warnings and errors displayed as you build

Very easy for others in org to use and edit - great for collaboration.

Linting & validation
CLI tools: Spectral, openapi-spec-validator, etc.

 $ spectral lint openapi.yaml
 No results with a severity of 'error' or higher found!

Rob Allen ~ @akrabat

Validation error
 $ spectral lint openapi.yaml

 .../slim4-rps-api/doc/openapi.yaml
 3:6 warning info-contact Info object must have
 "contact" object. info

 × 1 problem (0 errors, 1 warning, 0 infos, 0 hints)

Rob Allen ~ @akrabat

Writing is hard!

Spectral works in CI too!

'So we have our spec, now what?'

Coding Time!
Write an OpenAPI spec

Rob Allen ~ @akrabat

We're now going to write an OpenAPI specification for our Rock-Paper-Scissors game

See the exercise1 folder. I'm going to do this on the big screen so you can follow

along with me, or just watch!

Docs

Rob Allen ~ @akrabat

Docs

Rob Allen ~ @akrabat

Build API reference website directly from spec file using redoc

This isn't the only documentation you need though

Tutorials and other information need to be build around this. For example…

Docs

Rob Allen ~ @akrabat

Real world example: Integrate API reference into developer portal as Plaid have done

Notice that there's an Overview, informationon versioning, Postman collection etc.

Docs

Rob Allen ~ @akrabat

API reference information is taken straight from their GitHub

Docs

Rob Allen ~ @akrabat

Similarly, Vonage publish their OpenAPI Spec on GitHub...

Docs

Rob Allen ~ @akrabat

and publish into their developer portal. Note rest of portal

has tutorials, etc to round it out.

Demo Time!
Generating docs

Rob Allen ~ @akrabat

Let's just quickly look at how reference documentation works with and OpenAPI spec

Developers

Rob Allen ~ @akrabat

Mock server
$ prism mock openapi.yaml

Rob Allen ~ @akrabat

Make API calls
$ curl http://127.0.0.1:4010/games -d '{}'

Rob Allen ~ @akrabat

Make API calls
$ curl http://127.0.0.1:4010/games -d '{}'
{"message":"Must provide both player1 and player2"}

Rob Allen ~ @akrabat

Make API calls
$ curl http://127.0.0.1:4010/games -d '{}'
{"message":"Must provide both player1 and player2"}

Rob Allen ~ @akrabat

Fake servers that take description document as input, then route incoming

HTTP requests to example responses or dynamically generates examples.

Demo Time!
Using a mock server

Rob Allen ~ @akrabat

Let's just quickly look at how reference documentation works with and OpenAPI spec

Validation
The schema section can be used to validate the request and
response

• Validate early and return a 422

• Validate that we return what we say we will

• Put it in CI to prevent regressions

Rob Allen ~ @akrabat

But I already have validation!
Your code:
• isn't good enough!

• isn't reusable!

• doesn't match the docs!

Rob Allen ~ @akrabat

incomplete, not strict enough (e.g. array, not contents of)

inconsistent beween endpoints taking the same model

& out of step with documentation

Talk about ecommerce website passwords!

But I already have validation!
Your code:
• isn't good enough!

• isn't reusable!

• doesn't match the docs!

However…
Business logic validation still needed!

Rob Allen ~ @akrabat

Business logic for defensive programming

Context aware checking happens here

Cannot be delegate (is this id the right one?)

Business logic easier to write when you can trust the data strcutures

Not many deves handl errors in structure well

Validation in PHP
• league/openapi-psr7-validator

• opis/json-schema

Rob Allen ~ @akrabat

The League's OpenAPI validator is very good and obviously OpenAPI specific

opis/json-schema is useful if your API uses JSON schema

Validation middleware

Rob Allen ~ @akrabat

Test Request

Rob Allen ~ @akrabat

Request is invalid

Rob Allen ~ @akrabat

Request is invalid

Rob Allen ~ @akrabat

Test Request

Rob Allen ~ @akrabat

Request is valid

Rob Allen ~ @akrabat

Test Response

Rob Allen ~ @akrabat

Response is invalid

Rob Allen ~ @akrabat

Response is invalid

Rob Allen ~ @akrabat

Successful validation

Rob Allen ~ @akrabat

Successful validation

Rob Allen ~ @akrabat

Validation middleware
class OpenApiValidationMiddleware implements MiddlewareInterface
{
 public function __construct(string $oasFilename, Cache $cache)
 {
 $builder = new ValidatorBuilder();
 $builder->fromYamlFile($oasFilename);
 $builder->setCache($cache)->overrideCacheKey('openapi');

 $this->reqValidator = $builder->getServerRequestValidator();
 $this->respValidator = $builder->getResponseValidator();
 }

 public function process($request, $handler)
 {
 try {
 // validate request
 $match = $this->reqValidator->validate($request);
 } catch (ValidationFailed $e) {
 throw new HttpException($request, 422, $e);
 }

 // process
 $response = $handler->handle($request);

 try {
 // validate response
 $this->respValidator->validate($match, $response);
 return $response;
 } catch (ValidationFailed $e) {
 throw new HttpException($request, 500, $e);
 }
 }
}

Rob Allen ~ @akrabat

This is what an OpenAPI validation middleware class could look like.

The code is small, though so lets look at it in detail, one part at a time.

Validation middleware
public function __construct(string $oasFilename, Cache $cache)
{
 $builder = new ValidatorBuilder();
 $builder->fromYamlFile($oasFilename);
 $builder->setCache($cache)->overrideCacheKey('openapi');

 $this->reqValidator = $builder->getServerRequestValidator();
 $this->respValidator = $builder->getResponseValidator();
}

Rob Allen ~ @akrabat

Validation middleware
public function __construct(string $oasFilename, Cache $cache)
{
 $builder = new ValidatorBuilder();
 $builder->fromYamlFile($oasFilename);
 $builder->setCache($cache)->overrideCacheKey('openapi');

 $this->reqValidator = $builder->getServerRequestValidator();
 $this->respValidator = $builder->getResponseValidator();
}

Rob Allen ~ @akrabat

Validation middleware
public function __construct(string $oasFilename, Cache $cache)
{
 $builder = new ValidatorBuilder();
 $builder->fromYamlFile($oasFilename);
 $builder->setCache($cache)->overrideCacheKey('openapi');

 $this->reqValidator = $builder->getServerRequestValidator();
 $this->respValidator = $builder->getResponseValidator();
}

Rob Allen ~ @akrabat

Cache is a PSR-6 CacheItemPoolInterface

Validation middleware
public function __construct(string $oasFilename, Cache $cache)
{
 $builder = new ValidatorBuilder();
 $builder->fromYamlFile($oasFilename);
 $builder->setCache($cache)->overrideCacheKey('openapi');

 $this->reqValidator = $builder->getServerRequestValidator();
 $this->respValidator = $builder->getResponseValidator();
}

Rob Allen ~ @akrabat

and then we create our Request Validator and Response Validator

for use when processing.

Validation middleware
public function process($request, $handler)
{
 try {
 // validate request
 $match = $this->reqValidator->validate($request);
 } catch (ValidationFailed $e) {
 throw new HttpException($request, 422, $e);
 }

Rob Allen ~ @akrabat

Validation middleware
public function process($request, $handler)
{
 try {
 // validate request
 $match = $this->reqValidator->validate($request);
 } catch (ValidationFailed $e) {
 throw new HttpException($request, 422, $e);
 }

Rob Allen ~ @akrabat

To validate the request, we use our request validator, pass in

the request object and it'll return a match object

This is the used later as it hold which path we're validating, etc.

Validation middleware
public function process($request, $handler)
{
 try {
 // validate request
 $match = $this->reqValidator->validate($request);
 } catch (ValidationFailed $e) {
 throw new HttpException($request, 422, $e);
 }

Rob Allen ~ @akrabat

On failure, a ValidationFailed exception is thrown, we catch and throw a 422

Validation middleware
public function process($request, $handler)
{
 ...

 // process
 $response = $handler->handle($request);

Rob Allen ~ @akrabat

If we pass Request validation, we can process to run our request handler

and get back a PSR-7 Response object

Validation middleware
public function process($request, $handler)
{
 ...

 try {
 // validate response
 $this->respValidator->validate($match, $response);
 return $response;
 } catch (ValidationFailed $e) {
 throw new HttpException($request, 500, $e);
 }
}

Rob Allen ~ @akrabat

Validation middleware
public function process($request, $handler)
{
 ...

 try {
 // validate response
 $this->respValidator->validate($match, $response);
 return $response;
 } catch (ValidationFailed $e) {
 throw new HttpException($request, 500, $e);
 }
}

Rob Allen ~ @akrabat

Validation middleware
public function process($request, $handler)
{
 ...

 try {
 // validate response
 $this->respValidator->validate($match, $response);
 return $response;
 } catch (ValidationFailed $e) {
 throw new HttpException($request, 500, $e);
 }
}

Rob Allen ~ @akrabat

Coding Time!
Validating a PHP API

Rob Allen ~ @akrabat

We're now going to add OpenAPI validation to an Rock-Paper-Scissors application

See the exercise2 folder. I'm going to do this on the big screen so you can follow

along with me, or just watch!

Compliance Testing
Schemathesis reads your OpenAPI spec and tests your API against it

pip install schemathesis

schemathesis run --stateful=links --checks all \
 --base-url=http://localhost:8888 \
 doc/openapi.yaml

Rob Allen ~ @akrabat

Compliance Testing

Rob Allen ~ @akrabat

This is what you get when you run it

It runs lots of different inputs against your endpoints to see that they

work as your spec says that they do. 306 permutations in this case.

Other Interesting Tools
• Optic: BC Break Detection

• php-openapi-faker: Create fake data from OpenAPI spec

• Response2Schema: Generate OpenAPI spec from JSON object

• Laravel OpenAPI: Generate OpenAPI spec from a Laravel app

Many more at https://openapi.tools

Rob Allen ~ @akrabat

https://openapi.tools

To sum up

Rob Allen ~ @akrabat

It's about documentation

It's about design-first

It's about communication & communicating changes

It's about development workflows

It's about standardisation & leveraging everyone else

It's about a contract

OAS is about

documention, design-first, communication

development workflows. Lots of tooling

It is a contract

Resources
• https://www.openapis.org

• https://openapi.tools

• https://github.com/thephpleague/openapi-psr7-validator

• https://github.com/akrabat/slim4-rps-api

Rob Allen ~ @akrabat

https://www.openapis.org
https://openapi.tools
https://github.com/thephpleague/openapi-psr7-validator
https://github.com/akrabat/slim4-rps-api

Rob Allen ~ @akrabat

I want to leave you with this though from Phil Sturgeon

Thank you!

Rob Allen ~ @akrabat

Photo credits
- Scaffolding: https://www.flickr.com/photos/pagedooley/49683539647
- Writing: https://www.flickr.com/photos/throughkikslens/14516757158
- Books: https://www.flickr.com/photos/eternaletulf/41166888495
- Computer code: https://www.flickr.com/photos/n3wjack/3856456237
- Rocket launch: https://www.flickr.com/photos/gsfc/16495356966
- Stars: https://www.flickr.com/photos/gsfc/19125041621

Rob Allen ~ @akrabat

https://www.flickr.com/photos/pagedooley/49683539647
https://www.flickr.com/photos/throughkikslens/14516757158
https://www.flickr.com/photos/eternaletulf/41166888495
https://www.flickr.com/photos/n3wjack/3856456237
https://www.flickr.com/photos/gsfc/16495356966
https://www.flickr.com/photos/gsfc/19125041621

	openapi.yaml
	Metadata
	Endpoints
	Endpoints
	Endpoints
	Endpoints
	Endpoints
	RequestBody
	RequestBody
	RequestBody
	Reuse of objects
	Reuse of objects
	Reuse of objects
	Reuse of objects
	Reuse of objects
	Reuse of objects
	Build on top of other components
	Build on top of other components
	Build on top of other components
	Build on top of other components
	Build on top of other components
	RequestBody
	Responses
	Responses
	Responses
	Editing
	Editing
	Linting & validation
	Validation error
	Docs
	Docs
	Docs
	Docs
	Docs
	Mock server
	Make API calls
	Make API calls
	Make API calls
	Validation
	But I already have validation!
	But I already have validation!
	However…

	Validation in PHP
	Validation middleware
	Test Request
	Request is invalid
	Request is invalid
	Test Request
	Request is valid
	Test Response
	Response is invalid
	Response is invalid
	Successful validation
	Successful validation
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Compliance Testing
	Compliance Testing
	Other Interesting Tools
	Resources
	Photo credits

