

APIs Power the Internet

Rob Allen ~ @akrabat

There's not much that gets done on the Internet that doesn't use an API

They are how we develop software today. We both consume APIs and create them

APIs Power the Internet
API Descriptions Power APIs

Rob Allen ~ @akrabat

Using API Descriptions like OpenAPI, we enable better worflows

Today, I'm going to talk about the why and the what ofOpenAPI

and how an OpenAPI spec can be the centre of your API development

The OpenAPI Specification (OAS) defines a standard,
programming language-agnostic interface description
for HT'TP APIs, which allows both humans and
computers to discover and understand the
capabilities of a service

https://spec.openapis.org/oas/latest.html

Rob Allen ~ @akrabat

https://spec.openapis.org/oas/latest.html
Machine readable API description with lots of usage

The OpenAPI is an open standard, as in not owned by any one company & is a collaboration

It's about
documentation

Rob Allen ~ @akrabat

Can document all sorts of APIs, including webhooks

endpoints: verb, parameters, request bodies, responses

Also contains examples

It's about
design-first

Rob Allen ~ @akrabat

But can be used for any API

Everyone can contribute to the design

creates a sense of a level playing field for all stakeholders

see https://blog.stoplight.io/api-first-api-design-first-or-code-first-which-should-you-choose

It's about
communicating changes

Rob Allen ~ @akrabat

Plain text format allows diffing

Render to HTML directly from spec file

It's about
development worktlows

Rob Allen ~ @akrabat

Linters

Mock servers for testing before code written

Import to PostMan, Paw or other HttpClient

It's about
standardisation

Rob Allen ~ @akrabat

Reduce the time spent by integrators understanding your API

It's about
a contract

Rob Allen ~ @akrabat

An agreement between all stakeholders on how an API's requests and responses are structured.

Machine readable API description

endpoints: verb, parameters, request bodies, responses, examples

Can document all sorts of APIs, including webhooks

"Using a consistent API description will help

increase adoption of APIs across
government by reducing time spent in

understanding different APIs.

gov.uk

Rob Allen ~ @akrabat

akrabat

®
13
=

Lo

openapi.yaml

openapi: "3.1.0"
info: # ...
servers: # ...
paths: # ...
webhooks: # ...
components: # ...
security: # ...
tags: # ...
externalDocs: # ...

Rob Allen ~ @akrabat

Metadata

info:
title: Rock-Paper-Scissors
version: "1.0.0"
description: An implementation of Rock-Paper-Scissors.
contact:
name: "Rob Allen"
license:
name: The MIT License

servers.

— url: https://rock—-paper-scissors.example.com
description: "RPS production API"

Rob Allen ~ @akrabat

Useful for your clients, particularly version, contact, servers.

Also for directories when people are searching for APIs that do the thing they need

Endpoints

paths:
'/games ' :
get:
...
post:
...
' /games/{game_id}/moves"' :
post:
...
' /games/{game_id}/judgement ' :
get:
...

Rob Allen ~ @akrabat

In the paths key we specify our end points

This API has 3 endpoints and 4 operations as we can get and post to /games

As you can start to imagine, an Open API spec file can get quite long

Endpoints

paths:
'/games ' :
post:

operationld: createGame

summary: Create a new game

description: Create a new game of Rock-Paper-Scissors.

requestBody:
#

responses:
#

Rob Allen ~ @akrabat

Let's look at an individual operation and I've picked creating a new game

Endpoints

paths:
'/games ' :
post:

operationlId: createGame

summary: Create a new game

description: Create a new game of Rock-Paper-Scissors.

requestBody:
#

responses:
#

Rob Allen ~ @akrabat

This is our path. In this case, If it has a dynamic portion such as

the game ID, then that is surrounded in braces

Endpoints

paths:
'/games ' :
post:

operationlId: createGame

summary: Create a new game

description: Create a new game of Rock-Paper-Scissors.

requestBody:
#

responses:
#

Rob Allen ~ @akrabat

Which method are we describing? This one is a POST

Endpoints

operationld: createGame
summary: Create a new game
description: Create a new game of Rock-Paper-Scissors.
requestBody:
#
responses:
#

Rob Allen ~ @akrabat

This is the meat. We have meta info, then the practical data

Name your operationID with care! It's used in all sorts of places

such as anchors in documents, method names in generated code, etc

As this is a POST, we define the requestBody. For a GEt we'd describe parameters

We also declare the responses that a client can expect from this operation

RequestBody

requestBody :
description: Game to add
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/NewGameRequest’

Rob Allen ~ @akrabat

RequestBody

requestBody :
description: Game to add
required: true

Rob Allen ~ @akrabat

Again, we have a description. OpenAPI is nothing if not comprehensive, which is useful later

Also we note that we don't accept a POST request with no body - it defaults to false

RequestBody

content:
application/json:
schema:
$ref: '#/components/schemas/NewGameRequest’

Rob Allen ~ @akrabat

What content in which format should you supply?

In this, case we use a reference!

This is a pointer to the information that goes here, either in this file or in another one

Consider this compiler-assisted copy and paste!

Reuse of objects

$ref allows us to define once & use in many places

components:
schemas:
Gameld:
type: string
format: "uuid"
examples:
— "2BC08389-885A-4322-80D0-EFODE2D7CD3T"
Player:
type: string
example: "Lucy"

Rob Allen ~ @akrabat

We define our referenced blocks in the components key

Within components we have separate keys for each separate type of thing we're defining

e.g. schemas for input & output data types which is what I have here

There's also parameters, requestBodies, responses, examples, headers, links, etc

Reuse of objects

$ref allows us to define once & use in many places

Gameld:
type: string
format: "uuid"

examples:
— "2BC08389-885A-4322-80D0-EFODE2D7CD37"

Rob Allen ~ @akrabat

I have two separate schemas here, GameId and...

>CLICK THROUGH TO SHOW PLAYER<

Reuse of objects

$ref allows us to define once & use in many places

Player:
type: string
example: "Lucy"

Rob Allen ~ @akrabat

Palyer ID

As you can imagine, these are fundamentals and reused everywhere

>CLICK THROUGH TO LOOK AT GAME ID<

Reuse of objects

$ref allows us to define once & use in many places

Gameld:
type: string
format: "uuid"

examples:
— "2BC08389-885A-4322-80D0-EFODE2D7CD37"

Rob Allen ~ @akrabat

So, if we look at the GameId component

>CLICK THROUGH TO LOOK AT DETAIL<

Reuse of objects

$ref allows us to define once & use in many places

type: string
format: "uuid"

Rob Allen ~ @akrabat

Each component has a type - string in this case

For a string, we can specify its format: UUID

This is the place where all the rules are defined. E.g. is a number

length limits, negative allowed, date format accepted, etc

We can document it in detail, once!

For some components, there's a format. Strings can be UUIDs

and must be in this case

Reuse of objects

$ref allows us to define once & use in many places

examples:
— "2BC08389-885A-4322-80D0-EFODE2D7CD37"

Rob Allen ~ @akrabat

You can also specify an example. This is useful for documentation

and tooling, such as mock servers.

Build on top of other components

schemas:
NewGameRequest :
properties:
player1:
$ref: '#/components/schemas/Player'
player2:
$ref: '#/components/schemas/Player'
required:
- playert
- player?2
examples:
- "{"player1":"Lucy", "player2":"Dave"}"'

Rob Allen ~ @akrabat

Build on top of other components

schemas:
NewGameRequest :

Rob Allen ~ @akrabat

So if we go back to our NewGameRequest

This is a schema component that represents the request body to be sent

to create a new game. It builds on the components we have already built.

Build on top of other components

properties:

player1:
$ref: '#/components/schemas/Player'

player2:
$ref: '#/components/schemas/Player'

Rob Allen ~ @akrabat

A request body has a properties. In this case we need 2 players to play our game

and each one uses the Player component we saw earlier.

Build on top of other components

required:
— playert
— player?2

Rob Allen ~ @akrabat

Again, we specify which properties are required. In this case both players are needed.

Build on top of other components

examples:
- '{"player1":"Lucy", "player2":"Dave"}'

Rob Allen ~ @akrabat

And finally, we can provide an example for documentation.

RequestBody

content:
application/json:
schema:
$ref: '#/components/schemas/NewGameRequest’

Rob Allen ~ @akrabat

Which brings us back to our Request body that I should you earlier

where we referenced our NewGameRequest in the requestBody for creating a game

Responses

responses:
‘201" :
$ref: '#/components/responses/NewGameResponse’
'400"' :
$ref: '#/components/responses/NewGameError'
'500" :
$ref: '#/components/responses/InternalServerError'

Rob Allen ~ @akrabat

Similarly, we need to specify what our client developer can expect in the response

Responses

responses:
‘201"
$ref: '#/components/responses/NewGameResponse’
'400" :
$ref: '#/components/responses/NewGameError'
'500" :
$ref: '#/components/responses/InternalServerError'

Rob Allen ~ @akrabat

We provide a response definition for each status code that we will return.

Responses

$ref: '#/components/responses/NewGameResponse’
$ref: '#/components/responses/NewGameError'

$ref: '#/components/responses/InternalServerError'

Rob Allen ~ @akrabat

and in this case, we simply reference response components

You don't need to see the detail. As you can imagine, it's more YAML!

Arguably NewGameResponse and NewGameRequest aren't reusable, but makes the operation

easier to read.

The reusability is wonderful as it makes it easier to keep everything in sync.

That's a lot of YAML to write!

An OpenAPI spec can run to thousands of lines of code

Editing
It's just text!

EXPLORER

> OPEN EDITORS

> SLIM4-RPS-API
\ OUTLINE

[title Rock-Paper-Scissors
= version 1.0.0
(=) description An implementation of ...
v {} contact
name Rob Allen
v {} license
name The MIT License
v []servers
v {}o
[url https://rock-paper-scissors.ex...
v {} paths

> TIMELINE
X fophp81 ® ®O0AO0

rps-openapi.yaml — slim4-rps-api

! rps-openapiyaml X

doc >

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
156

399

! rps-openapiyaml > [Jtags > {} 0 > & description

openapi: "3.0.3"

info:
title: Rock-Paper-Scissors
version: "1.0.0"
description: An implementation of Rock-Paper-Scissors
contact:
name: "Rob Allen"
license:
name: The MIT License

servers:
- url: https://rock-paper-scissors.example.com

> paths: -
> components: -
Ln 404, Col 1

Spaces:2 UTF-8 LF YAML No JSON Schema

A

a]

Rob Allen ~ @akrabat

Just use an editor with plugins: vim, VS Code, etc

Syntax highlighting and folding certainly make it easy enough

I also quite like VSCode's outline view. PhpStorm has something similar on cmd+F12

You keep it in git anyway

Editing

GUI tools: Stoplight, OpenAPI-GUI, Swagger Editor

Docs

& rps-openapiyaml

Rock-Paper-Scissors
W AFIUVEerview

Paths

Jgames

/games/{game_id}/moves
(PosT]

/games/{game_id}/judgement

Models
Gameld
Player
Status
Move

NewGameRequest

VAV +

Stoplight Studio

doc

©» Game [i] Delete

Create anew game

https://rock-paper-scissors.example.com = /games

GET POST PUT PATCH DELETE HEAD

OPERATION ID

createGame

DESCRIPTION

Create a new game of Rock-Paper-Scissors

+ Security + Header -+ Query Param + Cookie

Path Params

OPTIONS

DEPRECATED

Form | </> Code

Docs Trylt

Create anew game

m /games

Create a new game of Rock-Paper-Scissors

Request
Body
Game to add

playerl ing

Rob Allen

40090 S

applicationfjson v

required

Rob Allen ~ @akrabat

Alternatively, use a GUI editor and build your spec this way

They are all two-way and edit the YAML behind the scenes

With Stoplight you get validation - warnings and errors displayed as you build

Very easy for others in org to use and edit - great for collaboration.

Linting & validation

CLI tools: Spectral, openapi-spec-validator, etc.

$ spectral lint openapi.yaml
No results with a severity of 'error' or higher found!

Rob Allen ~ @akrabat

Validation error

$ spectral lint openapi.yaml
.../slimd4-rps-api/doc/openapi.yaml
3:6 warning info-contact Info object must have

"contact" object. info

x 1 problem (@ errors, 1 warning, @ infos, © hints)

Rob Allen ~ @akrabat

Writing is hard!

Spectral works in CI too!

'So we have our spec, now what?'

Coding Time!
Write an OpenAPI spec

Rob Allen ~ @akrabat

We're now going to write an OpenAPI specification for our Rock-Paper-Scissors game

See the exercise1 folder. I'm going to do this on the big screen so you can follow

along with me, or just watch!

d
\
,
§ici B G
RERATOS | '

- m T - \\ &
cio-SarT |
i L ——— %‘Lﬂ] ‘I " Rob Allen ~ @akrabat

S List all games

127.0.0.1:808(

POST = /games

Create a new game

Create a new game of Rock-Paper-Scissors Request samples

application/json

Game to add Content type
application/json
i playerl string (Player)

Copy

player2 Player)

"playerl”:
“player:

Responses
Response samples

201

y making the first move s provided in the _Link f the retumed payload.
Content type

m with the provided information application/hal+json

Copy

Expand all ~ Collapse all

Expand all Collapse all

"game_id": "2BC08389-885A-4322-80D0-EF0DE2D7CD:

- "_links": {

- "makeNextMove": {

"href": "/games/2BC08389-885A-4322-80D0

"description”

Make a player's move"

Rob Allen ~ @akrabat

Build API reference website directly from spec file using redoc

This isn't the only documentation you need though

Tutorials and other information need to be build around this. For example…

plaid.com/docs/api

@ PLAID Docs Search 0 API Version: 2020-09-14 v Plaid.com ‘ Get APl keys >

< ALL DOCS /item/get

Retrieve an Item
= API etrieve an Ite
Returns information about the status of an Item
Overview

Libraries Request fields and example

APl versioning

- Current libraries Legacy libraries

Sieveie el Your Plaid API client_id. The client_id is required and may be provide -
B either in the PLAID-CLIENT-ID header or as part of a request body. Henvaet
Item endpoints
const request: ItemGetRequ
secret ring
/temvremove 9 access_token: accessToken
Your Plaid API secret. The secret is required and may be provided either in
/item/webhook/update secret is req y be pro
the PLAID-SECRET header or as part of a request body.
Institution endpoints const response = await plaidClient.itemGet(request)

Account endpoints and schemas access. token . const item = response.data.item
Token endpoints const status = response.data.status

The access token associated with the Item data is being requested for.

Processor endpoints (error

Sandbox endpoints

Webhooks

Response fields and example Collapse all ~
: API Object
item object b

Metadata about the Item.

Rob Allen ~ @akrabat

Real world example: Integrate API reference into developer portal as Plaid have done

Notice that there's an Overview, informationon versioning, Postman collection etc.

github.com/plaid/plaid-openapi

O Search or jump to... Pullrequests Issues Marketplace Explore

B plaid / plaid-openapi v

<> Code © lIssues 3 17 Pull

¥ master ~ © 1206+ +

& stephenjayakar 2020-09-14_162.7

githubjworkflows
2020-09-14yml
CHANGELOG.md

README.md

README.md

plaid-OpenAPI

requests 3 ® Actions 1 © Releases 10

1 10branches © 10105 a +-

551d9d5 5daysago YD) 62 commits

OpenAPI generated code at 02_17_21_14_55_52 12 months ago
OpenAPI generated code at 2022-01-24T22:21:31Z 5 days ago
OpenAPI generated code at 2022-01-24T22:21:31Z 5 days ago

OpenAPI generated code at 2021-10-26T20:35:27Z 3 months ago

7

Plaid uses the OpenAPI 3.0.0 specification to schematize our docs and to generate our supported client libraries.

This provides for a consistent typing experience across our external interfaces. Below we have listed some examples
and issues we have found when iterating on the specification.

Using the OpenAPI generator

You can find examples on the official OpenApiGenerator docs.

@® Watch ~ % Fork vy Star 39

APl version 2020-09-14
& plaid.com/docs

¥ 39 stars
® 35 watching
% 18forks

B 1yearold

© 1.8.1-beta: Merge pull request ... (Latest
on 10 Jun 2021

Contributors 8

TP S

4l

Rob Allen ~ @akrabat

API reference information is taken straight from their GitHub

O Search or jump to... Pull requests

github.

jobjmain/definit

Issues Marketplace Explore

B Nexmo / api-specification v

® Watch ~ % Fork ¢ Star 27

<> Code © lIssues 12 11 Pullrequests 8 ® Actions 5 © Releases 193

¥ main ~ api-specification / definitions / application.v2.yml

Q

a francesco-fipertani-vonage added version to messages capability (#450)

Latest commit 76c61ff on 9 Nov 2021 D History

A 8 contributors a P e ‘ Q ‘ ‘

838 lines (826 sloc) 39.6 KB

Raw Bame D @ 2 O
openapi: "3.0.0"
info:

version: 2.1.1

title: "Application API"

description: - |

Vonage provides-an-Application API to-allow management of your Vonage Applications.

This API is backwards compatible with version 1. Applications created using version 1 of the API can also be managed using version 2 (this version) of t
contact:

name: -Vonage

url: *https://developer.nexmo.com/"

email:-devrel@nexmo.com
servers:
- url: https://api.nexmo.com/v2/applications
security:
- basicAuth: []
paths:
/:

Rob Allen ~ @akrabat

Similarly, Vonage publish their OpenAPI Spec on GitHub...

developer.vonage.com/ap

\/ VONAGE DEVELOPER Use Cases Documentation SDKs & Tools Community

Application API

Vonage provides an Application API to allow management of your Vonage Applications

This APl is backwards compatible with v p reated using version 1 of the API can also be managed
using version 2 (this version) of the API.

o, Download OAS 3 Definition) Improve this specification

Available Operations:

T

List available applications

GET https://api.nexmo.com/v2/applications

Authentication

Key Description Example Default

- Base64 encoded API key and secret joined by a colon.
Authorization

Query Parameter

There are multiple versions of this APl available

ON 1| VERSION 2

Example Responses

400 H 401 ‘ 405 406

Q

Rob Allen ~ @akrabat

and publish into their developer portal. Note rest of portal

has tutorials, etc to round it out.

Demo Time!
Generating docs

Rob Allen ~ @akrabat

Let's just quickly look at how reference documentation works with and OpenAPI spec

rd -

\ 0 S

\ \ ® k-

' ¥ d S ®

’ by b S)

3 -9 2 2 &y 5

-3 g TS T~ <

- - et S 2

s i) v Jad =y - N~y]

>3 >3 T3 BD =30 ha

: =R IR - e W D5 n'T0 By

VI UDUIRENES IR U RT DRI O T i i

= - A w0 e 2 T DD
= 4 DD S B:tﬁﬂ.ﬁ}r‘an\xh’h
AAZCZILABRAYELASNS ADODA TS NESAE 1

- ,.rn.lbhl.ﬂﬂ.l SR AU OGS D ST E OO
PR NS O hgppgl LB LR S
LI o&aT g'n
LIS RENMEARS
gg.ﬁg':'

TEUSOWEEO

= CQUECCOSRYEPOEE OO EFEOOSSOO0
LfoW|Wma e ﬂ."L“.‘!‘i‘.‘

Mock server

$ prism mock openapi.yaml

doc — node Jopt/homebrew/bin/prism mock rps-openapi.yaml — 119x13

$ prism mock rps-openapi.yaml
Starting Prism.

GET http://127.0.0.1:4010/games

POST http://127.0.0.1:4010/games

POST http://127.0.0.1:4010/games/afdd8e99-1204-49b3-b2d5-dec45c34e7de/moves

GET http://127.0.0.1:4010/games/943bc989-c4fc-1c8c-42d8-1680da27aa75/ judgement
start Prism is listening on http://127.0.0.1:4010

Rob Allen ~ @akrabat

Make API calls

$ curl http://127.0.0.1:4010/games -d '{}'

Rob Allen ~ @akrabat

Make API calls

$ curl http://127.0.0.1:4010/games -d '{}'
{"message" :"Must provide both player1 and player2"}

Rob Allen ~ @akrabat

Make API calls

$ curl http://127.0.0.1:4010/games -d '{}'
{"message" :"Must provide both player1 and player2"}

doc — node Jopt/homebrew/bin/prism mock rps-openapi.yaml — 119x13

doc

[09:57:577 > |iflRAARNY2d| post /games Request received

[@9:57:57] » Request contains an accept header: */*

[09:57:57] > W/ABD/Ng| » warning Request did not pass the validation rules

[@9:57:57] > Unable to find a 422 response definition

[@9:57:57] > [NEGOTIATOR] A1 Found response 400. I'll try with it.

[09:57:57] » Unable to find a content with an example defined for the response 400
[09:57:57] » IRV 0d| »+ success The response 400 has a schema. I'll keep going with this one
[09:57:57] > W) [HCORYN0g| » success Responding with the requested status code 400

[09:57:57] » Violation: request.body must have required property 'playerl'
[09:57:57] » Violation: request.body must have required property 'player2'

Rob Allen ~ @akrabat

Fake servers that take description document as input, then route incoming

HTTP requests to example responses or dynamically generates examples.

Demo Time!
Using a mock server

Rob Allen ~ @akrabat

Let's just quickly look at how reference documentation works with and OpenAPI spec

Validation

The schema section can be used to validate the request and
response

e Validate early and returna 422
e Validate that we return what we say we will
e PutitinClto preventregressions

Rob Allen ~ @akrabat

But I already have validation!

Your code:
e isn't good enough!
e isn't reusable!
e doesn't match the docs!

Rob Allen ~ @akrabat

incomplete, not strict enough (e.g. array, not contents of)

inconsistent beween endpoints taking the same model

& out of step with documentation

Talk about ecommerce website passwords!

But I already have validation!

Your code:
e isn't good enough!
e isn't reusable!
e doesn't match the docs!

However...

Business logic validation still needed!

Rob Allen ~ @akrabat

Business logic for defensive programming

Context aware checking happens here

Cannot be delegate (is this id the right one?)

Business logic easier to write when you can trust the data strcutures

Not many deves handl errors in structure well

Validation in PHP

e league/openapi-psr7/-validator
e Opis/json-schema

Rob Allen ~ @akrabat

The League's OpenAPI validator is very good and obviously OpenAPI specific

opis/json-schema is useful if your API uses JSON schema

Validation middleware

Receive
Request

Run
application

Is Request Valid? Yes =

No

Create 422

Is Response Valid?

Create 500
Error

Send

EBE Response

Error

Rob Allen ~ @akrabat

Test Request

Receive Is Request Valid?
Request

Rob Allen ~ @akrabat

Request is invalid

Receive Is Request Valid?
Request

No

|

Create 422
Error

Rob Allen ~ @akrabat

Request is invalid

Receive 1o Send
Is Request Valid? —>

No

|

Create 422
Error

Rob Allen ~ @akrabat

Test Request

Receive Is Request Valid?
Request

Rob Allen ~ @akrabat

Request is valid

Receive ‘0 Run
Is Request Valid? Yes =9 application

Rob Allen ~ @akrabat

Test Response

Run

Receive
Request

Is Response Valid?

Is Request Valid? Yes =

application

Rob Allen ~ @akrabat

Response is invalid

Receive ‘0 Run 1>
Is Request Valid? Yes = it Is Response Valid?
No

Create 500
Error

Rob Allen ~ @akrabat

Response is invalid

Send
Response

Run i o
application Is Response Valid? —

Receive
Request

Yes =9

Is Request Valid?

Create 500
Error

Rob Allen ~ @akrabat

Successful validation

Receive ‘0 Run 1>
Is Request Valid? Yes = it Is Response Valid?

Rob Allen ~ @akrabat

Successful validation

Receive 1o Run ; Send
7 - o Is R Valid?
Request Is Request Valid Yes application s Response Valid Yes ——Pp> Response

Rob Allen ~ @akrabat

Validation middleware

class OpenApiValidationMiddleware implements Middlewarelnterface

{

public function __construct(string $oasFilename, Cache $cache)

{

}

$builder = new ValidatorBuilder()
$builder—> fromYamlFile($oasFilename);
$builder->setCache($cache)->overrideCacheKey('openapi');

$this->reqValidator = $builder->getServerRequestValidator();
$this->respValidator = $builder->getResponseValidator();

public function process($request, $handler)

{

try {

// validate request

$match = $this->reqValidator->validate($request);
} catch (ValidationFailed $e) {

throw new HttpException($request, 422, $e);
}

// process
$response = $handler->handle($request);

try {

// validate response
$this->respValidator->validate($match, $response);
return $response;

catch (ValidationFailed $e) {

throw new HttpException($request, 500, $e);

—

Rob Allen ~ @akrabat

This is what an OpenAPI validation middleware class could look like.

The code is small, though so lets look at it in detail, one part at a time.

Validation middleware

public function __construct(string $oasFilename, Cache $cache)

{

$builder = new ValidatorBuilder();
$builder—> fromYamlFile($oasFilename);
$builder-s>setCache($cache)->overrideCacheKey('openapi');

$this->reqValidator = $builder->getServerRequestValidator();
$this->respValidator = $builder-s>getResponseValidator();

Rob Allen ~ @akrabat

Validation middleware

$builder = new ValidatorBuilder();
$builder—> fromYamlFile($oasFilename);

Rob Allen ~ @akrabat

Validation middleware

$builder-s>setCache($cache)->overrideCacheKey('openapi');

Rob Allen ~ @akrabat

Cache is a PSR-6 CacheItemPoolInterface

Validation middleware

$this->reqValidator = $builder->getServerRequestValidator();
$this->respValidator = $builder-s>getResponseValidator();

Rob Allen ~ @akrabat

and then we create our Request Validator and Response Validator

for use when processing.

Validation middleware

public function process($request, $handler)

{

try {
// validate request

$match = $this->reqValidator-s>validate($request);
} catch (ValidationFailed $e) {
throw new HttpException($request, 422, $e);

}

Rob Allen ~ @akrabat

Validation middleware

// validate request
$match = $this->reqValidator-s>validate($request);

Rob Allen ~ @akrabat

To validate the request, we use our request validator, pass in

the request object and it'll return a match object

This is the used later as it hold which path we're validating, etc.

Validation middleware

try {

} catch (ValidationFailed $e) {
throw new HttpException($request, 422, $e);

}

Rob Allen ~ @akrabat

On failure, a ValidationFailed exception is thrown, we catch and throw a 422

Validation middleware

// process
$response = $handler->handle($request);

Rob Allen ~ @akrabat

If we pass Request validation, we can process to run our request handler

and get back a PSR-7 Response object

Validation middleware

try {
// validate response

$this->respValidator->validate($match, $response);
return $response;

} catch (ValidationFailed $e) {
throw new HttpException($request, 500, $e);

Rob Allen ~ @akrabat

Validation middleware

// validate response
$this->respValidator->validate($match, $response);
return $response;

Rob Allen ~ @akrabat

Validation middleware

try {

} catch (ValidationFailed $e) {
throw new HttpException($request, 500, $e);

}

Rob Allen ~ @akrabat

Coding Time!
Validating a PHP API

Rob Allen ~ @akrabat

We're now going to add OpenAPI validation to an Rock-Paper-Scissors application

See the exercise2 folder. I'm going to do this on the big screen so you can follow

along with me, or just watch!

Compliance Testing

Schemathesis reads your OpenAPI spec and tests your APl against it

pip install schemathesis

schemathesis run —--stateful=1inks —--checks all \
——base—-url=http://localhost:8888 \

doc/openapi.yaml

Rob Allen ~ @akrabat

Compliance Testing

3 doc — doc — -bash — 119x26

Schemathesis test session starts

platform Darwin -- Python 3.9.7, schemathesis-3.12.3, hypothesis-6.36.0, hypothesis_jsonschema-0.22.0, jsonschema-4.4.0
rootdir: /Users/rob/Projects/slimng/slim4-rps-api/doc
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/Users/rob/Projects/slimng/slim4-rps-api/doc/.h

ypothesis/examples')

Schema location: file:///Users/rob/Projects/slimng/slim4-rps-api/doc/rps-openapi.yaml

Base URL: http://localhost:8888
Specification version: Open API 3.0.3
Workers: 1

Collected API operations: 4

GET /games .

POST /games .

POST /games/{game_id}/moves .
GET /games/{game_id}/judgement .

SUMMARY

[25%]
[50%]
[75%]
[100%]

Performed checks:
not_a_server_error
status_code_conformance
content_type_conformance
response_headers_conformance
response_schema_conformance

306 / 306 passed
306 / 306 passed
306 / 306 passed
306 / 306 passed
306 / 306 passed

4 passed in 85.55s

PASSED
PASSED
PASSED
PASSED
PASSED

Rob Allen ~ @akrabat

This is what you get when you run it

It runs lots of different inputs against your endpoints to see that they

work as your spec says that they do. 306 permutations in this case.

Other Interesting Tools

e Optic: BC Break Detection

e php-openapi-faker: Create fake data from OpenAPI spec

e Response2Schema: Generate OpenAPI spec from JSON object
e Laravel OpenAPl: Generate OpenAPI spec from a Laravel app

Many more at https://openapi.tools

Rob Allen ~ @akrabat

https://openapi.tools

Rob Allen ~ @akrabat

It's about documentation

It's about design-first

It's about communication & communicating changes

It's about development workflows

It's about standardisation & leveraging everyone else

It's about a contract

OAS is about

documention, design-first, communication

development workflows. Lots of tooling

It is a contract

Resources

e https://www.openapis.org
e https://openapi.tools

e https://github.com/thephpleague/openapi-psr7-validator
e https://github.com/akrabat/slim4-rps-api

Rob Allen ~ @akrabat

https://www.openapis.org
https://openapi.tools
https://github.com/thephpleague/openapi-psr7-validator
https://github.com/akrabat/slim4-rps-api

Wandering Woodsman @ & @&
g7 @philsturgeon
If you've not got a test suite, YOU NEED A TEST SUITE.

If you've not got OpenAPI, why are you making every step of the API lifecycle worse,
slower, and more manual.

API Design-First: https://apisyouwonthate.com/blog/api-design-first-vs-code-first
Or, play catchup: https://apisyouwonthate.com/blog/creating-openapi-from-http-traffic

Either way, go get OpenAPI.

11:49 AM - Feb 5, 2022 - Twitter Web App

Rob Allen ~ @akrabat

I want to leave you with this though from Phil Sturgeon

ek

Rob Allen ~ @akrabat

Photo credits

- Scaffolding: https://www.flickr.com/photos/pagedooley/49683539647
- Writing: https://www.flickr.com/photos/throughkikslens/14516757158
- Books: https://www.flickr.com/photos/eternaletulf/41166888495

- Computer code: https://www.flickr.com/photos/n3wjack/3856456237
- Rocket launch: https://www.flickr.com/photos/gsfc/16495356966

- Stars: https://www.flickr.com/photos/gsfc/19125041621

Rob Allen ~ @akrabat

https://www.flickr.com/photos/pagedooley/49683539647
https://www.flickr.com/photos/throughkikslens/14516757158
https://www.flickr.com/photos/eternaletulf/41166888495
https://www.flickr.com/photos/n3wjack/3856456237
https://www.flickr.com/photos/gsfc/16495356966
https://www.flickr.com/photos/gsfc/19125041621

	openapi.yaml
	Metadata
	Endpoints
	Endpoints
	Endpoints
	Endpoints
	Endpoints
	RequestBody
	RequestBody
	RequestBody
	Reuse of objects
	Reuse of objects
	Reuse of objects
	Reuse of objects
	Reuse of objects
	Reuse of objects
	Build on top of other components
	Build on top of other components
	Build on top of other components
	Build on top of other components
	Build on top of other components
	RequestBody
	Responses
	Responses
	Responses
	Editing
	Editing
	Linting & validation
	Validation error
	Docs
	Docs
	Docs
	Docs
	Docs
	Mock server
	Make API calls
	Make API calls
	Make API calls
	Validation
	But I already have validation!
	But I already have validation!
	However…

	Validation in PHP
	Validation middleware
	Test Request
	Request is invalid
	Request is invalid
	Test Request
	Request is valid
	Test Response
	Response is invalid
	Response is invalid
	Successful validation
	Successful validation
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Validation middleware
	Compliance Testing
	Compliance Testing
	Other Interesting Tools
	Resources
	Photo credits

