
JAMstackin’
Cloud ready architecture for web sites

Story time: Guess the stack

10 pages of intranet information.
Campus overview, organisational
charts and most important
telephone numbers. Updated 2-3x
per year

Liferay Portal

Foodie-Facebook! 1000s of
members put recipes online, like
and share. They can put recipes
on their weekly food plan.
Coaches can comment and help
adjusting.

Wordpress

An event page, where people can
select seats and tickets to a
multitude of events in real-time.
They can reserve seats for friends
who can buy within a couple of
hours.

A Java enterprise application

An event page, where people can
select seats and tickets to a
multitude of events in real-time.
They can reserve seats for friends
who can buy within a couple of
hours.

A Java Enterprise application,
publishing 20 JSON files and 7 PHP

scripts every other hour.

The tools of our trade

Front-End: Markup, CSS, JS

CMS: Data, structures, editors

Application: Process, state

Hosting: Availability, stability, security

Technology Lock-In

Front-End: Markup, CSS, JS

CMS: Data, structures, editors

Application: Process, state

Hosting: Availability, stability, security

Front-End

Templating languages

Static site generators

Data
storage Renderer Routing Client

Request
Call

renderer
Fetch
data

Deliver
Response

Render
HTML

Deliver
data

Traditional “Pull” Architecture

Data
storage Renderer Routing Client

“Push” Architecture of static sites

Move all
data, all
possible
content

Render
all HTML

pages
upfront

in correct
routes

Request

Deliver
Response

Hosting

Scaleable, blazingly fast, secure

Deploy it: Storage, Dropbox

It’s just HTML

Sources: Markdown, JSON, APIs

+

Some SSGs are more flexible than others

Not so good with binary data

Which increases as site grows bigger

Needs a build process

-

Front-End: Markup, CSS, JS

CMS: Daten, Strukturen, Editoren

Applikation: Prozesse, Zustände

Hosting: Availability, stability, security

Content

That’s nothing for non tech-savvy
users!

Going headless

CMS status independent of site status

For regular size projects free/cheap plans

100% output independet

CMS, not Content Design System

+

What’s your content exit strategy

Big users pay big money

Almost no good open source alternatives

Git as a CMS -> Sounds good, doesn’t work

-

Front-End: Markup, CSS, JS

CMS: Data, structures, editors

Applikation: Prozesse, Zustände

Hosting: Availability, stability, security

Applications

Serverless

Serverless is not about having no
servers, it’s about not caring
about servers

“Functions as a Service”

It’s like developing for the
browser, but on the server

const qs = require('querystring')

module.exports = async function(context, req) {
 const params = qs.parse(req.body)
 context.log(req, params)
 const message = {
 "personalizations": [{ "to": [{ "email": "sbaumg@gmail.com" }] }],
 from: { email: params.mail },
 subject: "Feedback from Website",
 content: [{
 type: 'text/plain',
 value: `${params.name} says: ${params.text}`
 }]
 }
 return {
 httpResponse: {
 body: { msg: “Message sent!” },
 status: 302
 },
 sendgrid: message
 }
}

Accept: application/json Accept: text/html

Accept: text/html Accept: */*

Integration with 3rd party services is easy

Defined Input and Output

Manageable attack surface

Pay what you need

+

More interfaces, more contracts

What if we like state

What about platform independence

Serverless architectures are hard

-

Front-End: Markup, CSS, JS

CMS: Data, structures, editors

Application: Process state

Hosting: Availability, stability, security

JAMstack

J
A
M

avascript
PIs
arkup

J
A
M

avascript
PIs
arkup

Templated markup prebuilt at
deploy time. Using a static site
generator. Deployable anyhwere

J
A
M

avascript
PIs
arkup Server side processes and DB

actions are abstracted into
reusable APIs over HTTPS and
JavaScript

J
A
M

avascript
PIs
arkup Dynamic processes are done on

the client. Via JavaScript.
Deployed markup is extended
with functionality from APIs
client-side.

build deploy enhance

Focus on builds and
deployment

Prepared functions for
common use cases

Ready for most
web sites

All-in Serverless: 
Every language, every
technology

Builds through builders
or commands

Static tags along

Enterprise level Cloud:

Azure DevOps
Azure Storage
Azure CDN
Azure Functions

No technology lock-in
Incremental adoption

The most important thing about
JAMstack is that you can start
right away with a small piece of
your current website.

Front-End

Content

Application

Hosting

Front-End

Content

Application

Hosting

Front-End

Content

Application

Hosting

Sum it up

Full control of every part in your app

Incremental adoption

Resilient, failsafe, sustainable

Every piece is independent

+

Exit strategies!

This is 3rd party land!

Very platform specific

Lots of technologies: Fragmentation

-

Every web site and web app
that can be done with
JAMstack, should be done with
JAMstack

— Stefan Baumgartner

(every web site can be done
with JAMstack)

— Stefan Baumgartner

@ddprrt
fettblog.eu · scriptconf.org · devone.at

