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–G.K. Adams

Sometimes in order to keep moving forward,  
not only must you take one step at a time,  

but you must be willing to look back occasionally and 
evaluate your past, no matter how painful it is. 

 
Looking back lets you know whether or not you are headed in 

the right direction. 





So many good ideas are never heard from again 
once they embark in a voyage on the semantic gulf 

–Alan J. Perlis, Epigrams on Programming (1982)
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• CTO at Fission (https://fission.codes)


• Edge apps ("post-serverless")


• Goal: make back-ends and DevOps obsolete


• PLT, VMs, distributed systems


• Standards: DIF, UCAN, Ethereum, Multiformats, others


• Founded VanFP, VanBEAM


• Primary author of Witchcraft, Algae, Exceptional, etc
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The BEAM does so much right 👏

Meta 🔮
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Spoiler Alert 🚨
Meta 🔮

1. Breaking out of linear thinking / von Neumann 🌀

2. New types of modularity (for the BEAM) 🔌

3. Composable languages 🗣
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Around computers it is difficult to find the 
correct unit of time to measure progress. 

Some cathedrals took a century to complete. 
Can you imagine the grandeur and scope of a 

program that would take as long? 

Epigram 28

In the Beginning... 🌴🦖

–Alan J. Perlis, Epigrams on Programming (1982)
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It’s really difficult to distinguish  
a new paradigm  

from a really bad idea 
[...] 

The new shiny object  
is part of the old paradigm 

– Douglas Crockford, The Power of the Paradigm (2018)
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Paradigm Redshift 🌈
Law of Conservation of Complexity

Every application has an inherent amount of complexity 
that cannot be removed or hidden, 
but only moved from place to place

– Larry Tesler
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1. Array-based 📈


2. Applicative Model 🤹


3. SML Module System 🔌


4. Natural & Biz Language 🕴

✂

✂
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Let's start with something alien
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Paradigm Redshift 🌈
Something Alien

{↑1 ⍵∨.∧3 4=+/, ̄1 0 1∘.⊖ ̄1 0 1∘.⌽⊂⍵} 

Attribution: wikipedia user LucasVB

LIFE←
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Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

• Each step is very simple

• Reasoning about dynamic organisms is hard!

• Emergent behaviour 😱

• VM in your brain to reason at a higher level

• We can abstract away some of this


• Broadway


• Arrows
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Paradigm Redshift 🌈
What can we learn from APL?
Universal Scaling Law

http://www.perfdynamics.com/Manifesto/USLscalability.html

Incoherence Penalty USL

Amdahl's 
Law
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What can we learn from APL?
doall / Automatic Parallelism / Cyclic Multithreading 🔁

1. Shared-nothing architecture


2. Good for embarrassingly  
parallel problems


3. Macro could do a LOT more with 
this at compile-time


4. Impurity and granular control mean 
that we don't get this by default 
(with good reason)



OTP → TOP
Table Oriented Programming
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Paradigm Redshift 🌈
Table Oriented Programming
Perfectly Parallel Control Tables

Fu
nc

tio
ns

Data

Zero dependencies 
by definition
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–Alan J. Perlis, Epigrams on Programming (1982)



Symmetry is a complexity-reducing concept;  
seek it everywhere
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Epigram 6

–Alan J. Perlis, Epigrams on Programming (1982)



Symmetry is a complexity-reducing concept;  
seek it everywhere

Complexity & Modularity 🧱

Epigram 6

–Alan J. Perlis, Epigrams on Programming (1982)

You can't communicate complexity, only awareness of it
Epigram 105
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Complexity & Modularity 🧱
What do you mean by "composition"?

Commutativity

HOF Application

Orthogonality

Modularity
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What do you mean by "composition"?
Focus 🔬

Composition in the function dimension

Dataflow

f g

h
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What do you mean by "composition"?
Focus 🔬

Composition in the capabilities  
(protocols and HOFs)

 
Function

Data
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Complexity & Modularity 🧱
How Modular are Modules?

Higher Order Modules

💖


Behaviours
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Declarative Embedded DSLs 🍏🍊

I have regarded it as the highest goal 
of programming language design 

to enable good ideas 
to be elegantly expressed

– Tony Hoare, Turing Aware Lecture, 1980
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Isn't Everything a DSL?

Wide Narrow

Paradigm

Pattern
Language

DSL
Framework

Interfa
ce

Application
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Isn't Everything a DSL?
Counterexample

This is just Elixir!
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Business Language 
for Business Time 

💼
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Declarative Embedded DSLs 🍏🍊
Business Language 💼

Toggl, How to Kill at the Dragon in 9 Programming Languages 


What can we learn from COBOL?
(Yes, really. COBOL.)
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Upside

1. Fabulous for communicating with domain experts 


2. We know how these DSLs work (e.g. they form an algebra) 


3. They can be correct-by-construction 


4. Check for various properties (compile- or run-time)


5. A language that exactly fits your needs (DDD)
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But We Have a Problem

Declarative Embedded DSLs 🍏🍊

(Hint: it's inflexibility)
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Declarative Embedded DSLs 🍏🍊

i.e. The "Quick and Dirty" Way
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Declarative Embedded DSLs 🍏🍊
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Declarative Embedded DSLs 🍏🍊

"Better AST"
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Declarative Embedded DSLs 🍏🍊
Deep Embedding
Three Steps

1. Build a game plan

2. Transform (optional)

3. Tear down
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Deep Embedding
Tradeoffs

•More work to write (write your own AST)


•Way more powerful (full control)


•Precisely the vocabulary that you need — exact surface area


•Can check more things about the meaning of your code


•Logic-as-data is MUCH simpler to debug than running functions


•Time travelling debugging!


•Unlike protocols, you’re not locked into one canonical implementation 



Declarative Embedded DSLs 🍏🍊
Deep Embedding
Combine Powerful, Modular, Reusable DSLs!
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Deep Embedding
More Flexible Than protocols

1. Protocols require canonicity  

2. Libraries of well-defined mini-languages, even without interpreter  

3. Different in tests and prod (trivial to mock) 
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Let's Make New Mistakes
5 Problems for the Next 30 Years of BEAM

1. Wasm — client & edge BEAM 

2. Lower the barrier to entry (low code) 

3. Correctness tools (i.e. better static & dynamic analysis, formal methods) 

4. Automatic dynamic parallel evaluation 

5. Mobile agents (incl. dynamic FaaS) 
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Dealing with failure is easy:

–Alan J. Perlis, Epigrams on Programming (1982)

Epigram 101

work hard to improve.

Success is also easy to handle:
you've solved the wrong problem.

Work hard to improve.



🎉 Thank You, India 🇮🇳
brooklyn@fission.codes


https://fission.codes

github.com/expede


@expede

mailto:brooklyn@fission.codes
https://noti.st/expede
http://github.com/expede

