

to

 the futureBEAM

O L D I D E A S M A D E N E W

to

 the futureBEAM

O L D I D E A S M A D E N E W

2022 Edition

–G.K. Adams

Sometimes in order to keep moving forward,  
not only must you take one step at a time,  

but you must be willing to look back occasionally and
evaluate your past, no matter how painful it is. 

 
Looking back lets you know whether or not you are headed in

the right direction.

So many good ideas are never heard from again 
once they embark in a voyage on the semantic gulf

–Alan J. Perlis, Epigrams on Programming (1982)

Epigram 53

Meta

Brooklyn Zelenka
@expede

Brooklyn Zelenka
@expede

• CTO at Fission (https://fission.codes)

• Edge apps ("post-serverless")

• Goal: make back-ends and DevOps obsolete

• PLT, VMs, distributed systems

• Standards: DIF, UCAN, Ethereum, Multiformats, others

• Founded VanFP, VanBEAM

• Primary author of Witchcraft, Algae, Exceptional, etc

Meta 🔮

Meta 🔮

The BEAM does so much right 👏

Meta 🔮

How do we move forward  
as an ecosystem,  

cross language, cross paradigm?

Meta 🔮

How do we move forward  
as an ecosystem,  

cross language, cross paradigm?

Meta 🔮

Local Maxima
Meta 🔮

Local Maxima
Meta 🔮

😄

Local Maxima
Meta 🔮

😄

😍

Local Maxima
Meta 🔮

😄

😍

😭

Spoiler Alert 🚨
Meta 🔮

Spoiler Alert 🚨
Meta 🔮

1. Breaking out of linear thinking / von Neumann 🌀

Spoiler Alert 🚨
Meta 🔮

1. Breaking out of linear thinking / von Neumann 🌀

2. New types of modularity (for the BEAM) 🔌

Spoiler Alert 🚨
Meta 🔮

1. Breaking out of linear thinking / von Neumann 🌀

2. New types of modularity (for the BEAM) 🔌

3. Composable languages 🗣

In the Beginning...

🌴🦖

In the Beginning... 🌴🦖

Around computers it is difficult to find the 
correct unit of time to measure progress. 

Some cathedrals took a century to complete. 
Can you imagine the grandeur and scope of a 

program that would take as long?

Epigram 28

In the Beginning... 🌴🦖

–Alan J. Perlis, Epigrams on Programming (1982)

In the Beginning... 🌴🦖

In the Beginning... 🌴🦖

In the Beginning... 🌴🦖

In the Beginning... 🌴🦖

In the Beginning... 🌴🦖

29 Years

In the Beginning... 🌴🦖

29 Years

In the Beginning... 🌴🦖

29 Years

In the Beginning... 🌴🦖

29 Years

In the Beginning... 🌴🦖

36 Years29 Years

In the Beginning... 🌴🦖

36 Years29 Years

Paradigm Redshift
🌈

Paradigm Redshift 🌈

It’s really difficult to distinguish  
a new paradigm  

from a really bad idea 
[...] 

The new shiny object  
is part of the old paradigm

– Douglas Crockford, The Power of the Paradigm (2018)

Paradigm Redshift 🌈

Paradigm Redshift 🌈
Novelty Budget

Paradigm Redshift 🌈
Novelty Budget

Paradigm Redshift 🌈
Novelty Budget

Paradigm Redshift 🌈
Law of Conservation of Complexity

Paradigm Redshift 🌈
Law of Conservation of Complexity

Every application has an inherent amount of complexity 
that cannot be removed or hidden, 
but only moved from place to place

– Larry Tesler

Paradigm Redshift 🌈
The "What If" Tree

Paradigm Redshift 🌈
The "What If" Tree

Paradigm Redshift 🌈
The "What If" Tree

1. Array-based 📈

2. Applicative Model 🤹

3. SML Module System 🔌

4. Natural & Biz Language 🕴

Paradigm Redshift 🌈
The "What If" Tree

1. Array-based 📈

2. Applicative Model 🤹

3. SML Module System 🔌

4. Natural & Biz Language 🕴

✂

Paradigm Redshift 🌈
The "What If" Tree

1. Array-based 📈

2. Applicative Model 🤹

3. SML Module System 🔌

4. Natural & Biz Language 🕴

✂

✂

Paradigm Redshift 🌈

Paradigm Redshift 🌈

Let's start with something alien

🛸👽

Paradigm Redshift 🌈
Something Alien

Paradigm Redshift 🌈
Something Alien

{↑1 ⍵∨.∧3 4=+/, ̄1 0 1∘.⊖ ̄1 0 1∘.⌽⊂⍵}

Paradigm Redshift 🌈
Something Alien

{↑1 ⍵∨.∧3 4=+/, ̄1 0 1∘.⊖ ̄1 0 1∘.⌽⊂⍵}

Paradigm Redshift 🌈
Something Alien

{↑1 ⍵∨.∧3 4=+/, ̄1 0 1∘.⊖ ̄1 0 1∘.⌽⊂⍵} LIFE←

Paradigm Redshift 🌈
Something Alien

{↑1 ⍵∨.∧3 4=+/, ̄1 0 1∘.⊖ ̄1 0 1∘.⌽⊂⍵}

Attribution: wikipedia user LucasVB

LIFE←

Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

• Each step is very simple

Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

• Each step is very simple

• Reasoning about dynamic organisms is hard!

Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

• Each step is very simple

• Reasoning about dynamic organisms is hard!

Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

• Each step is very simple

• Reasoning about dynamic organisms is hard!

• Emergent behaviour 😱

Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

• Each step is very simple

• Reasoning about dynamic organisms is hard!

• Emergent behaviour 😱

• VM in your brain to reason at a higher level

Paradigm Redshift 🌈
What can we learn from APL?
Cellular Automata & Actors as Organisms 🌸

• Each step is very simple

• Reasoning about dynamic organisms is hard!

• Emergent behaviour 😱

• VM in your brain to reason at a higher level

• We can abstract away some of this

• Broadway

• Arrows

Paradigm Redshift 🌈
What can we learn from APL?
Universal Scaling Law

http://www.perfdynamics.com/Manifesto/USLscalability.html

Paradigm Redshift 🌈
What can we learn from APL?
Universal Scaling Law

http://www.perfdynamics.com/Manifesto/USLscalability.html

Amdahl's 
Law

Paradigm Redshift 🌈
What can we learn from APL?
Universal Scaling Law

http://www.perfdynamics.com/Manifesto/USLscalability.html

USL

Amdahl's 
Law

Paradigm Redshift 🌈
What can we learn from APL?
Universal Scaling Law

http://www.perfdynamics.com/Manifesto/USLscalability.html

Incoherence Penalty USL

Amdahl's 
Law

Paradigm Redshift 🌈
What can we learn from APL?
doall / Automatic Parallelism / Cyclic Multithreading 🔁

Paradigm Redshift 🌈
What can we learn from APL?
doall / Automatic Parallelism / Cyclic Multithreading 🔁

1. Shared-nothing architecture

2. Good for embarrassingly  
parallel problems

3. Macro could do a LOT more with
this at compile-time

4. Impurity and granular control mean
that we don't get this by default
(with good reason)

OTP → TOP
Table Oriented Programming

Paradigm Redshift 🌈

Paradigm Redshift 🌈
Table Oriented Programming
Naive Tables

Paradigm Redshift 🌈
Table Oriented Programming
Naive Tables

Name Handle City

Brooklyn expede Vancouver

Quinn quinnwilton Mountain View

Steven icidasset Ghent

Paradigm Redshift 🌈
Table Oriented Programming
Naive Tables

Name Handle City

Brooklyn expede Vancouver

Quinn quinnwilton Mountain View

Steven icidasset Ghent

Paradigm Redshift 🌈
Table Oriented Programming
Naive Tables

Name Handle City

Brooklyn expede Vancouver

Quinn quinnwilton Mountain View

Steven icidasset Ghent

Paradigm Redshift 🌈
Table Oriented Programming
Perfectly Parallel Control Tables

Paradigm Redshift 🌈
Table Oriented Programming
Perfectly Parallel Control Tables

Fu
nc

tio
ns

Data

Paradigm Redshift 🌈
Table Oriented Programming
Perfectly Parallel Control Tables

Fu
nc

tio
ns

Data

Paradigm Redshift 🌈
Table Oriented Programming
Perfectly Parallel Control Tables

Fu
nc

tio
ns

Data

Paradigm Redshift 🌈
Table Oriented Programming
Perfectly Parallel Control Tables

Fu
nc

tio
ns

Data

Zero dependencies 
by definition

Paradigm Redshift 🌈
Table Oriented Programming
The Nth-Dimension 🚀

Paradigm Redshift 🌈
Table Oriented Programming

Composition &

Modularity

🧱

Complexity & Modularity 🧱

Complexity & Modularity 🧱

–Alan J. Perlis, Epigrams on Programming (1982)

Symmetry is a complexity-reducing concept;  
seek it everywhere

Complexity & Modularity 🧱

Epigram 6

–Alan J. Perlis, Epigrams on Programming (1982)

Symmetry is a complexity-reducing concept;  
seek it everywhere

Complexity & Modularity 🧱

Epigram 6

–Alan J. Perlis, Epigrams on Programming (1982)

You can't communicate complexity, only awareness of it
Epigram 105

Complexity & Modularity 🧱

What do you mean 
by "composition"?

Complexity & Modularity 🧱
What do you mean by "composition"?

Complexity & Modularity 🧱
What do you mean by "composition"?

HOF Application

Complexity & Modularity 🧱
What do you mean by "composition"?

HOF Application

Modularity

Complexity & Modularity 🧱
What do you mean by "composition"?

Commutativity

HOF Application

Modularity

Complexity & Modularity 🧱
What do you mean by "composition"?

Commutativity

HOF Application

Orthogonality

Modularity

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Composition in the data dimension

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Composition in the data dimension

a

b c

d e

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Composition in the function dimension

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Composition in the function dimension

f g

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Composition in the function dimension

Dataflow

f g

h

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Composition in the capabilities  
(protocols and HOFs)

Complexity & Modularity 🧱
What do you mean by "composition"?
Focus 🔬

Composition in the capabilities  
(protocols and HOFs)

 
Function

Data

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

t

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

t

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

t

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

t

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

t

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

t

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

It co
mmutes!

👍

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

t

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

It co
mmutes!

👍

Complexity & Modularity 🧱
What do you mean by "composition"?
Execution Symmetry

t

A program can be developed on a sequential platform, even if it is
meant to run on a parallel platform, because the behaviour is not

affected by whether we execute it using a sequential or parallel dynamics
– Robert Harper, Practical Foundations for Programming Languages (2012)

It co
mmutes!

👍

Complexity & Modularity 🧱
What do you mean by "composition"?
Explicit Data Flow

Complexity & Modularity 🧱
What do you mean by "composition"?
Explicit Data Flow

Complexity & Modularity 🧱
What do you mean by "composition"?
Explicit Data Flow

Complexity & Modularity 🧱
What do you mean by "composition"?
Explicit Data Flow

Complexity & Modularity 🧱

How Modular are
Modules?

Complexity & Modularity 🧱

How Modular are
Modules?

(and libraries)

Complexity & Modularity 🧱

How Modular are
Modules?

(and libraries)

Complexity & Modularity 🧱
How Modular are Modules?
Module-Level Modularity

Complexity & Modularity 🧱
How Modular are Modules?
Module-Level Modularity

"Hot-swappable dependencies"

Complexity & Modularity 🧱
How Modular are Modules?
Module-Level Modularity

"Hot-swappable dependencies"

Complexity & Modularity 🧱
How Modular are Modules?
Module-Level Modularity

"Hot-swappable dependencies"

Complexity & Modularity 🧱
How Modular are Modules?
Module-Level Modularity

"Hot-swappable dependencies"

Complexity & Modularity 🧱
How Modular are Modules?
Hacking Extending the Module System

Complexity & Modularity 🧱
How Modular are Modules?
Hacking Extending the Module System

Complexity & Modularity 🧱
How Modular are Modules?
Hacking Extending the Module System

Complexity & Modularity 🧱
How Modular are Modules?

Higher Order Modules

💖

Behaviours

Declarative Embedded DSLs 
🍏🍊

Declarative Embedded DSLs 🍏🍊

Declarative Embedded DSLs 🍏🍊

I have regarded it as the highest goal 
of programming language design 

to enable good ideas 
to be elegantly expressed

– Tony Hoare, Turing Aware Lecture, 1980

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?

Wide Narrow

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?

Wide Narrow

Paradigm

Pattern
Language

DSL
Framework

Interfa
ce

Application

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?
Counterexample

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?
Counterexample

This is just Elixir!

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?
Algebraic Data Type eDSL

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?
Algebraic Data Type eDSL

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?
Algebraic Data Type eDSL

Declarative Embedded DSLs 🍏🍊
Isn't Everything a DSL?
Algebraic Data Type eDSL

Business Language 
for Business Time 

💼

Declarative Embedded DSLs 🍏🍊

Declarative Embedded DSLs 🍏🍊
Business Language 💼

Declarative Embedded DSLs 🍏🍊
Business Language 💼

Toggl, How to Kill at the Dragon in 9 Programming Languages

What can we learn from COBOL?
(Yes, really. COBOL.)

Declarative Embedded DSLs 🍏🍊
What Can We Learn from COBOL?

Declarative Embedded DSLs 🍏🍊
What Can We Learn from COBOL?
When No One Wants to Go To Jail 👩⚖

Declarative Embedded DSLs 🍏🍊
What Can We Learn from COBOL?
When No One Wants to Go To Jail 👩⚖

• Needs to be readable by lawyers

• (Who can't read code)

• Formal methods & static analysis

• Down to the compiler, of course

• An unholy union of COBOL and Prolog

Declarative Embedded DSLs 🍏🍊
What Can We Learn from COBOL?
When No One Wants to Go To Jail 👩⚖

• Needs to be readable by lawyers

• (Who can't read code)

• Formal methods & static analysis

• Down to the compiler, of course

• An unholy union of COBOL and Prolog

Declarative Embedded DSLs 🍏🍊
Upside

Declarative Embedded DSLs 🍏🍊
Upside

1. Fabulous for communicating with domain experts

2. We know how these DSLs work (e.g. they form an algebra)

3. They can be correct-by-construction

4. Check for various properties (compile- or run-time)

5. A language that exactly fits your needs (DDD)

But We Have a Problem

Declarative Embedded DSLs 🍏🍊

But We Have a Problem

Declarative Embedded DSLs 🍏🍊

(Hint: it's inflexibility)

🏖 Shallow Embedding 🦀

Declarative Embedded DSLs 🍏🍊

🏖 Shallow Embedding 🦀

Declarative Embedded DSLs 🍏🍊

i.e. The "Quick and Dirty" Way

Declarative Embedded DSLs 🍏🍊
Shallow Embedding

• Just use the built-in AST

• What it can represent is limited

• e.g. Ecto, Algae

Declarative Embedded DSLs 🍏🍊
Shallow Embedding

• Just use the built-in AST

• What it can represent is limited

• e.g. Ecto, Algae

Declarative Embedded DSLs 🍏🍊
Shallow Embedding

• Just use the built-in AST

• What it can represent is limited

• e.g. Ecto, Algae

Declarative Embedded DSLs 🍏🍊
Shallow Embedding

• Just use the built-in AST

• What it can represent is limited

• e.g. Ecto, Algae

Declarative Embedded DSLs 🍏🍊
Shallow Embedding

🌊 Deep Embedding 🦈

Declarative Embedded DSLs 🍏🍊

🌊 Deep Embedding 🦈

Declarative Embedded DSLs 🍏🍊

"Better AST"

Declarative Embedded DSLs 🍏🍊
Deep Embedding
Three Steps

Declarative Embedded DSLs 🍏🍊
Deep Embedding
Three Steps

1. Build a game plan

2. Transform (optional)

3. Tear down

Declarative Embedded DSLs 🍏🍊
Deep Embedding
"Build a Game Plan" Example

Declarative Embedded DSLs 🍏🍊
Deep Embedding
"Build a Game Plan" Example

Declarative Embedded DSLs 🍏🍊
Deep Embedding
Tradeoffs

Declarative Embedded DSLs 🍏🍊
Deep Embedding
Tradeoffs

•More work to write (write your own AST)

•Way more powerful (full control)

•Precisely the vocabulary that you need — exact surface area

•Can check more things about the meaning of your code

•Logic-as-data is MUCH simpler to debug than running functions

•Time travelling debugging!

•Unlike protocols, you’re not locked into one canonical implementation

Declarative Embedded DSLs 🍏🍊
Deep Embedding
Combine Powerful, Modular, Reusable DSLs!

Declarative Embedded DSLs 🍏🍊
Deep Embedding
Desugar

Declarative Embedded DSLs 🍏🍊
Deep Embedding
"Huh, this kinda feels like GenServer" 😉

Declarative Embedded DSLs 🍏🍊
Deep Embedding
"Huh, this kinda feels like GenServer" 😉

Declarative Embedded DSLs 🍏🍊
Deep Embedding
"Huh, this kinda feels like GenServer" 😉

Declarative Embedded DSLs 🍏🍊
Deep Embedding
"Huh, this kinda feels like GenServer" 😉

Declarative Embedded DSLs 🍏🍊
Deep Embedding
With Their Powers Combined!

Declarative Embedded DSLs 🍏🍊
Deep Embedding
One Last Line

Declarative Embedded DSLs 🍏🍊
Deep Embedding
One Last Line

Declarative Embedded DSLs 🍏🍊
Deep Embedding
More Flexible Than protocols

Declarative Embedded DSLs 🍏🍊
Deep Embedding
More Flexible Than protocols

1. Protocols require canonicity  

2. Libraries of well-defined mini-languages, even without interpreter  

3. Different in tests and prod (trivial to mock)

Let's Make New Mistakes! 💥✨

Let's Make New Mistakes! 💥✨
5 Problems for the Next 30 Years of BEAM

Let's Make New Mistakes
5 Problems for the Next 30 Years of BEAM

Let's Make New Mistakes
5 Problems for the Next 30 Years of BEAM

1. Wasm — client & edge BEAM

Let's Make New Mistakes
5 Problems for the Next 30 Years of BEAM

1. Wasm — client & edge BEAM

2. Lower the barrier to entry (low code)

Let's Make New Mistakes
5 Problems for the Next 30 Years of BEAM

1. Wasm — client & edge BEAM

2. Lower the barrier to entry (low code)

3. Correctness tools (i.e. better static & dynamic analysis, formal methods)

Let's Make New Mistakes
5 Problems for the Next 30 Years of BEAM

1. Wasm — client & edge BEAM

2. Lower the barrier to entry (low code)

3. Correctness tools (i.e. better static & dynamic analysis, formal methods)

4. Automatic dynamic parallel evaluation

Let's Make New Mistakes
5 Problems for the Next 30 Years of BEAM

1. Wasm — client & edge BEAM

2. Lower the barrier to entry (low code)

3. Correctness tools (i.e. better static & dynamic analysis, formal methods)

4. Automatic dynamic parallel evaluation

5. Mobile agents (incl. dynamic FaaS)

Parting Thought 🧠

–Alan J. Perlis, Epigrams on Programming (1982)

–Alan J. Perlis, Epigrams on Programming (1982)

Epigram 101

Dealing with failure is easy:

–Alan J. Perlis, Epigrams on Programming (1982)

Epigram 101

Dealing with failure is easy:

–Alan J. Perlis, Epigrams on Programming (1982)

Epigram 101

work hard to improve.

Dealing with failure is easy:

–Alan J. Perlis, Epigrams on Programming (1982)

Epigram 101

work hard to improve.

Success is also easy to handle:

Dealing with failure is easy:

–Alan J. Perlis, Epigrams on Programming (1982)

Epigram 101

work hard to improve.

Success is also easy to handle:
you've solved the wrong problem.

Dealing with failure is easy:

–Alan J. Perlis, Epigrams on Programming (1982)

Epigram 101

work hard to improve.

Success is also easy to handle:
you've solved the wrong problem.

Work hard to improve.

🎉 Thank You, India 🇮🇳
brooklyn@fission.codes

https://fission.codes

github.com/expede

@expede

mailto:brooklyn@fission.codes
https://noti.st/expede
http://github.com/expede

