
Designing for Everyone: 
Building Great Web Experiences 
for Any Device

Aaron	Gustafson

BRK2411

In October of 2016, mobile ate the desktop…

https://aka.ms/desktop-v-mobile-2016

Mobile traffic overtakes desktop globally

https://aka.ms/desktop-v-mobile-2016

Mobile accounts for 56% of all traffic*

Desktop

Mobile

*Based	on	77	billion	website	visits.	

https://aka.ms/desktop-web-2017

https://aka.ms/desktop-web-2017

But the numbers differ by industry

News

Desktop Mobile

Food

Desktop Mobile

Finance

Desktop Mobile

https://aka.ms/desktop-web-2017

https://aka.ms/desktop-web-2017

Desktop users spend more time on sites (60%)*

Desktop

Mobile

*Based	on	39	trillion	seconds.	

https://aka.ms/desktop-web-2017

https://aka.ms/desktop-web-2017

Anywhere from 10-300%

Finance

Desktop Mobile

Food

Desktop Mobile

News

Desktop Mobile

https://aka.ms/desktop-web-2017

https://aka.ms/desktop-web-2017

Bounce rates on mobile are 40% higher than desktop*

0

11

22

33

44

Desktop Mobile

*Based	on	584	billion	page	views.	

https://aka.ms/desktop-web-2017

https://aka.ms/desktop-web-2017

Desktop users view more pages (59%)

Desktop

Mobile

*Based	on	584	billion	page	views.	

https://aka.ms/desktop-web-2017

https://aka.ms/desktop-web-2017

Anywhere from 1.5x to 3x more pages per visit

Finance

Desktop Mobile

Food

Desktop Mobile

News

Desktop Mobile

https://aka.ms/desktop-web-2017

https://aka.ms/desktop-web-2017

The “desktop” experience matters

Web browsing is 
the #1 user activity 
on PCs

The “desktop” experience matters, 
even for Progressive Web Apps

40% of Order Ahead
transactions on the
Starbucks PWA come
from desktop

Carnival Cruise Line saw
a 16% opt-in 
for Push Notifications 
on desktop

Katarzyna	Ostrowska

https://aka.ms/carnival-pwa

https://aka.ms/carnival-pwa

We believe the web can (and should) reach 
beyond the browser, which is why we are so heavily
invested in making PWAs successful on Windows

PWAs start with a great web experience and then
enhance that experience for performance, resilience,
installation, and engagement

PWAs start with a great web experience and then
enhance that experience for performance, resilience,
installation, and engagement

PWAs start with a great web experience and then
enhance that experience for performance, resilience,
installation, and engagement

Progressive 
/prəˈɡresiv/ 
 
happening	or	developing	gradually	or	in	stages;	proceeding	step	

by	step

Step	1 
Focus on what matters

Consider forbes.com circa 2007

“Mobile first” thinking

Remember that text is the first interface

Is there anything missing that would 
help users be more successful?

Finding Our Focus

Josh	Williams  
Starbucks

Task first?

Turns	out	customers	like	to	“do”	things	

with	the	apps	we	build

We focused on our 
key customer journeys

·Enable customers to join the
Starbucks Rewards program

·Enable customers to transact via
Order Ahead and Barcode Pay

·Enable customers to track  
progress towards their 
earned rewards

Store Locator was our
first actual production
“PWA” feature

And	it	was	chromed	in	the	previous	site

From there, we were able to 
add in other key features

·Sign-in and Account Create

·Barcode pay

·eGift and Account management

·etc.

Finding Our Focus

Josh	Williams  
Starbucks

Step	2 
Use markup that supports the core experience

The words we choose matter, 
but the markup we use matters equally

What does it mean?

<div	class="entry"> 
		<div	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</div> 
		<div	class="entry__meta"> 
				<div>Published	24	May	2017</div>  
				<div>Reading	Time	25	minutes</div>  
		</div> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</div>

This div marks up a piece of self-contained content

<div	class="entry"> 
		<div	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</div> 
		<div	class="entry__meta"> 
				<div>Published	24	May	2017</div>  
				<div>Reading	Time	25	minutes</div>  
		</div> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</div>

There’s a tag for that: article

<article	class="entry"> 
		<div	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</div> 
		<div	class="entry__meta"> 
				<div>Published	24	May	2017</div>  
				<div>Reading	Time	25	minutes</div>  
		</div> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</article>

This div is the title of the blog post

<article	class="entry"> 
		<div	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</div> 
		<div	class="entry__meta"> 
				<div>Published	24	May	2017</div>  
				<div>Reading	Time	25	minutes</div>  
		</div> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</article>

There’s a tag for that: h1-h6

<article	class="entry"> 
		<h1	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</h1> 
		<div	class="entry__meta"> 
				<div>Published	24	May	2017</div>  
				<div>Reading	Time	25	minutes</div>  
		</div> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</article>

These div elements define various properties of the post

<article	class="entry"> 
		<h1	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</h1> 
		<div	class="entry__meta"> 
				<div>Published	24	May	2017</div>  
				<div>Reading	Time	25	minutes</div>  
		</div> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</article>

There’s an element for the: dl

<article	class="entry"> 
		<h1	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</h1> 
		<dl	class="entry__meta"> 
				<dt>Published</dt>	<dd>24	May	2017</dd>  
				<dt>Reading	Time</dt>	<dd>25	minutes</dd>  
		</dl> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</article>

Bonus: time

<article	class="entry"> 
		<h1	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</h1> 
		<dl	class="entry__meta"> 
				<dt>Published</dt>	<dd><time>24	May	2017</time></dd>  
				<dt>Reading	Time</dt>	<dd>25	minutes</dd>  
		</dl> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</article>

Bonus: time

<time	datetime="2017-05-24"> 
		24	May	2017</time> 
 
<time	datetime="2017-05-24T11:13:24"> 
		24	May	2017</time> 
 
<time	datetime="2017-05-24T11:13:24-04:00"> 
		24	May	2017</time>

This is “flow” content with line breaks

<article	class="entry"> 
		<h1	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</h1> 
		<dl	class="entry__meta"> 
				<dt>Published</dt>	<dd><time	…>24	May	2017</time></dd>  
				<dt>Reading	Time</dt>	<dd>25	minutes</dd>  
		</dl> 
		<div	class="entry__content"> 
				I	had	the	great	pleasure	of	delivering	a	talk…  
				

	
				I	do	a	lot	of	traveling	and	it’s… 
		</div> 
</article>

This is “flow” content with generic divisions

<article	class="entry"> 
		<h1	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</h1> 
		<dl	class="entry__meta"> 
				<dt>Published</dt>	<dd><time	…>24	May	2017</time></dd>  
				<dt>Reading	Time</dt>	<dd>25	minutes</dd>  
		</dl> 
		<div	class="entry__content"> 
				<div>I	had	the	great	pleasure	of	delivering	a	talk…</div>  
				<div>I	do	a	lot	of	traveling	and	it’s…</div>  
		</div> 
</article>

That is meaningful content

<article	class="entry"> 
		<h1	class="entry__title">Progressive	Web	Apps	and  
				the	Windows	Ecosystem</h1> 
		<dl	class="entry__meta"> 
				<dt>Published</dt>	<dd><time	…>24	May	2017</time></dd>  
				<dt>Reading	Time</dt>	<dd>25	minutes</dd>  
		</dl> 
		<div	class="entry__content"> 
				<p>I	had	the	great	pleasure	of	delivering	a	talk…</p>  
				<p>I	do	a	lot	of	traveling	and	it’s…</p>  
		</div> 
</article>

With CSS it all looks the same anyway, 
so why should I care?

Readability

Readability

Hey Cortana, read me the top three 
headlines in today’s New York Times

Accessing content via semantics:

function	extractHeadlines(response){	
		var	$html	=	document.createElement('div'),	
						$headings,	i=0,	headlines=[];	
		$html.innerHTML	=	response.contents;	
		$headings	=	$html.querySelector('#top-news') 
																.querySelectorAll('article	h1,	article	h2,	article	h3');  
		heading_count	=	$headings.length; 
		while	(headlines.length	<	3)	{	
				let	$link	=	$headings[i].querySelector('a');  
				if	($link	&&	$link.href)	{	
						headlines.push({ 
								title:	$headings[i].innerText.trim(),  
								link:	$link.href 
						});	
				} 
				i++;	
		} 
		console.log(headlines);	
}

Accessing content via semantics:

function	extractHeadlines(response){	
		var	$html	=	document.createElement('div'),	
						$headings,	i=0,	headlines=[];	
		$html.innerHTML	=	response.contents;	
		$headings	=	$html.querySelector('#top-news') 
																.querySelectorAll('article	h1,	article	h2,	article	h3');  
		heading_count	=	$headings.length; 
		while	(headlines.length	<	3)	{	
				let	$link	=	$headings[i].querySelector('a');  
				if	($link	&&	$link.href)	{	
						headlines.push({ 
								title:	$headings[i].innerText.trim(),  
								link:	$link.href 
						});	
				} 
				i++;	
		} 
		console.log(headlines);	
}

https://aka.ms/dependency-awareness

https://aka.ms/dependency-awareness

Let’s say you needed to code a button…

<input	type="submit"	value="Sign	Up">

<button	type="submit">Sign	Up</button> 

Sign	Up 

<div	class="button">Sign	Up</div>

Sign	Up

Let’s compare

Pattern Display Semantics Focusable? Activate By
Submits
Forms

input[type=submit] button button Yes
Mouse, touch,
ENTER, SPACE Yes

button[type=submit] button button Yes Mouse, touch,
ENTER, SPACE

Yes

a link Named
generic

Yes Mouse, touch,
ENTER

No

div block Not exposed No N/A No

UX gaps that need to be filled

Pattern Display Semantics Focusable? Activate By
Submits
Forms

input[type=submit] button button Yes
Mouse, touch,
ENTER, SPACE Yes

button[type=submit] button button Yes Mouse, touch,
ENTER, SPACE

Yes

a link Named
generic

Yes Mouse, touch,
ENTER

No

div block Not exposed No N/A No

Filling those gaps introduces dependencies

Pattern Display Semantics Focusable? Activate By
Submits
Forms

input[type=submit] None None None None None

button[type=submit] None None None None None

a CSS ARIA None JavaScript JavaScript

div CSS ARIA HTML JavaScript JavaScript

More dependencies, more (potential) problems

Dependencies

P
o
t
e
n
t
ia
l	
fo
r
	f
a
il
u
r
e

Disaster averted

More dependencies, more (potential) problems

Dependencies

P
o
t
e
n
t
ia
l	
fo
r
	f
a
il
u
r
e

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

Enhancing UX with markup

<input	type="email"	name="email"	id="email" 
							required	aria-required="true">

Experience deltas  

1. Support for email input type?  

2. Validation algorithm implemented?  

3. Virtual keyboard?

Enhancing UX with markup

<input	type="email"	name="email"	id="email" 
							required	aria-required="true">

Experience deltas  

1. Support for HTML validation?

Enhancing UX with markup

<input	type="email"	name="email"	id="email" 
							required	aria-required="true">

Experience deltas  

1. Browser exposure of aria-required property?

2. Assistive tech implementation of aria-required?

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

required validation

email validation

dedicated keyboard

text input

required notification

When you think of user experience as a continuum
that scales with capabilities, a progressive approach
to interfaces is both elegant and powerful.

Step	3 
Design in support of the core experience

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

floats

grid

blocks

positioning

flexbox

media queries

https://aka.ms/enhanced-css-layouts

https://aka.ms/enhanced-css-layouts

I’ve been amazed at how
often those outside the
discipline of design assume
that what designers do is
decoration—likely because
so much bad design simply
is decoration. Good design
isn’t. Good design is
problem solving.

—	Jeff	Veen

Tools for graphic design

·Alignment
·Balance
·Contrast
·Emphasis
·Gestalt
·Harmony
·Movement

·Proportion
·Proximity
·Repetition
·Rhythm
·Unity
·White Space

Tools for graphic design

·Alignment
·Balance
·Contrast
·Emphasis
·Gestalt
·Harmony
·Movement

·Proportion
·Proximity
·Repetition
·Rhythm
·Unity
·White Space

Alignment

Contrast

Proportion

Proximity

Rhythm

https://aka.ms/vertical-rhythm

https://aka.ms/vertical-rhythm

Unity

Design considerations unique to the web

·Screen size
·Resolution
·Brightness
·Color density
·User preference
·Network speed & quality
·Assistive technology

Design considerations unique to the web

·Screen size
·Resolution
·Brightness
·Color density
·User preference
·Network speed & quality
·Assistive technology

Design considerations unique to the web

·Screen size
·Resolution
·Brightness
·Color density
·User preference
·Network speed & quality
·Assistive technology

☞ Responsive layouts
☞ SVG, responsive images
☞ Contrast
☞ Color choice, media queries

☞ Responsive images, system fonts

Design considerations unique to the web

·Screen size
·Resolution
·Brightness
·Color density
·User preference
·Network speed & quality
·Assistive technology

Examples of user preference

·Larger or smaller fonts  
@media	(min-width:	32em)	{	…	} 

·High contrast colors 
@media	(-ms-high-contrast:	active)	{	…	} 
@media	(-ms-high-contrast:	white-on-black)	{	…	}  
@media	(-ms-high-contrast:	black-on-white)	{	…	}  

·Reduced motion  
@media	screen	and	(prefers-reduced-motion:	reduce)	{	…	}

Assistive technologies

·Vision
·Screen magnifiers	
·Screen readers	
·Braille printers & refreshable braille displays	
·High contrast settings	

·Motor/mobility
·Speech recognition	
·Mouse settings	
·Keyboards & keyboard overlays	
·Eye tracking	

·Hearing
·Captions & subtitles

Confirm Cancel

Confirm Cancel

Don’t rely on color
alone to convey
important information

https://aka.ms/color-contrast

Good contrast
ensures your
content is readable

https://aka.ms/color-contrast

Figure	
3.3	shows	the	lodging	article	
in	Safari	with	only	the	default	
browser	styles	applied. 

…	

<figure	id="figure-3-3">	
		…	
</figure>

Explicit connections
ensure everyone can
follow references

Figure	
3.3	shows	the	lodging	article	
in	Safari	with	only	the	default	
browser	styles	applied. 

…	

<figure	id="figure-3-3">	
		…	
</figure>

Explicit connections
ensure everyone can
follow references

Provide ample space around 
interactive elements

Finish	Reading

Consider what 
your design 
leaves unsaid

 
		<b	class="hidden">You	can 
		finish	reading 
		<b	class="hidden">“The	Web 
				Should	Just	Work	for 
				Everyone”	in	less	than 
				10	minutes 

Consider what 
your design 
leaves unsaid

 
		<b	class="hidden">You	can 
		finish	reading 
		<b	class="hidden">“The	Web 
				Should	Just	Work	for 
				Everyone”	in	less	than 
				10	minutes 

Consider what 
your design 
leaves unsaid

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

Enhancing design in CSS

p	{ 
		color:	green; 
		color:	rgba(0,	255,	0,	.8); 
}

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

p	{ 
		color:	green; 
		color:	rgba(0,	255,	0,	.8); 
}

Older browsers without RGBa support, ignore the second rule

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

p	{ 
		color:	green; 
		color:	rgba(0,	255,	0,	.8); 
}

Modern browsers with RGBa support, overwrite the first rule

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

h1:has(+	p)	{ 
		color:	green; 
}

(That selects h1s that have adjacent sibling paragraphs.)

Passwords	can	be  
a	hassle

Enhancing design in CSS

h1:has(+	p)	{ 
		color:	green; 
}

Browsers that don’t support :has() ignore the entire rule set

Passwords	can	be  
a	hassle

Enhancing design in CSS

h1:has(+	p)	{ 
		color:	green; 
}

As browsers support :has(), matching h1s will turn green

Passwords	can	be  
a	hassle

Enhancing design in CSS

@media	only	screen	{ 
		p	{ 
				color:	green; 
		} 
}	

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

@media	only	screen	{ 
		p	{ 
				color:	green; 
		} 
}	

Browsers without media query support ignore the block

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

@media	only	screen	{ 
		p	{ 
				color:	green; 
		} 
}	

Browsers with media query support apply it

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

@supports	(display:	grid)	{ 
		p	{ 
				color:	green; 
		} 
}	

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

@supports	(display:	grid)	{ 
		p	{ 
				color:	green; 
		} 
}

Browsers that don’t grok @supports ignore the block

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

@supports	(display:	grid)	{ 
		p	{ 
				color:	green; 
		} 
}

Browsers that understand @supports, but don’t display grid ignore it

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

Enhancing design in CSS

@supports	(display:	grid)	{ 
		p	{ 
				color:	green; 
		} 
}	

Browsers that understand @supports and grid apply it

Passwords	can	be	a	hassle.	Most	

people	don’t	create	strong	

passwords	or	make	sure	to	

maintain	a	different	one	for	

every	site.	People	create	easy-

to-remember	passwords	and	

typically	use	the	same	

passwords	across	all	of	their	

accounts.

When it comes to HTML & CSS, 
browsers ignore what they don’t understand

When it comes to HTML & CSS, 
browsers ignore what they don’t understand 
 
And new specs smartly override conflicting syntax

https://aka.ms/enhanced-css-layouts

https://aka.ms/enhanced-css-layouts

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

“Mobile first” design

.primary	{ 
		float:	left;		
		width:	68%; 
}	
.secondary	{ 
		float:	right;		
		width:	32%; 
}	
@media	(max-width:599px)	{ 
		.primary,	.secondary	{		
				float:	none;		
				width:	auto; 
		}		
}	

“Desktop first”

.primary	{ 
		float:	left;		
		width:	68%; 
}	
.secondary	{ 
		float:	right;		
		width:	32%; 
}	
@media	(max-width:599px)	{ 
		.primary,	.secondary	{		
				float:	none;		
				width:	auto; 
		}		
}	

“Desktop first”

.primary	{ 
		float:	left;		
		width:	68%; 
}	
.secondary	{ 
		float:	right;		
		width:	32%; 
}	
@media	(max-width:599px)	{ 
		.primary,	.secondary	{		
				float:	none;		
				width:	auto; 
		}		
}	

“Desktop first”

@media	(min-width:600px)	{ 
		.primary	{		
				float:	left;		
				width:	68%; 
		}		
		.secondary	{ 
				float:	right;		
				width:	32%; 
		}		
}	

“Mobile first”

@media	(min-width:600px)	{ 
		.primary	{		
				float:	left;		
				width:	68%; 
		}		
		.secondary	{ 
				float:	right;		
				width:	32%; 
		}		
}	

“Mobile first”

Other ways to design “mobile first”

·Selectively deliver advances styles 

·Isolate large CSS images in min-width media queries 

·Don’t hide content images using CSS  

·Use responsive images 

·Prefer system fonts  

·font-display:	optional

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

Step	4 
Improve the core experience with JavaScript

When it comes to HTML & CSS, 
browsers ignore what they don’t understand

When it comes to HTML & CSS, 
browsers ignore what they don’t understand 
 
Sadly, that’s not the case with JavaScript

What happens when a browser doesn’t understand let?

document.body.innerHTML	+=	'<p>Can	I	count	to	four?</p>’;	

for	(let	i=1;	i<=4;	i++)	
{	
		document.body.innerHTML	+=	'<p>'	+	i	+	'</p>';	
}	

document.body.innerHTML	+=	'<p>Success!</p>';

https://aka.ms/js-let-down

https://aka.ms/js-let-down

https://aka.ms/js-let-down

https://aka.ms/js-let-down

More dependencies, more (potential) problems

Dependencies

P
o
t
e
n
t
ia
l	
fo
r
	f
a
il
u
r
e

We can and should use JavaScript, 
but thoughtfully & intentionally

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

Server-side render

JavaScript Application

Detecting support

if	(navigator.credentials)	{	
 
		//	Actual	logic	goes	here	

}

Creating the credential
//	Create	a	credential	with	WebAuthn	APIs	
navigator.credentials.create({	
		publicKey:	{	
				rp:	{	/*	relying	party	info	*/	},	
				user:	{	/*	user	info	*/	},	
				authenticatorSelection:	{	
						authenticatorAttachment:	"platform"	
				},	
				pubKeyCredParams:	[{	
						type:	"public-key",	
						alg:	-257	/*	Accept	RS256	credentials	*/	
				}],	
				//	and	other	required	parameters	such	as	challenge,	timeout,	...	
		}	
}).then(attestation	=>	{	
		//	Send	the	credential	to	your	server,	which	decodes	it	and	stores	the	public	key	
		sendToServer(attestation);	
});

Verifying the credential later

//	Next	time	the	user	visits	the	page,	call	the	WebAuthn	APIs	
navigator.credentials.get({	
		publicKey:	{	

				allowCredentials:	[{	
						type:	"public-key",	
						id:	credentialId	//	ID	of	credential(s)	previously	created	

				}]	
				//	and	other	required	parameters	such	as	challenge,	timeout,	...	
		}	

}).then(assertion	=>	{	
		//	Send	the	assertion	to	your	server,	which	decodes	it	and	ensures	the		
		//	contained	signature	matches	the	public	key	received	at	credential	creation	
		sendToServer(assertion);	

});

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

Normal password

WebAuthN

Wait, but don’t Progressive Webs 
and Service Workers require JavaScript?!

Registering a Service Worker

if	(navigator.serviceWorker)	{	
		navigator.serviceWorker.register('/serviceworker.js')	
				.then(function(registration)	{	
						console.log('Success!',	registration.scope);	
				})	
				.catch(function(error)	{	
						console.error('Failure!',	error);	
				});	
}

Object detection FTW!

if	(navigator.serviceWorker)	{	
		navigator.serviceWorker.register('/serviceworker.js')	
				.then(function(registration)	{	
						console.log('Success!',	registration.scope);	
				})	
				.catch(function(error)	{	
						console.error('Failure!',	error);	
				});	
}

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

Site

PWA

Installed PWA

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

Site

PWA in browser

Enhance the Service Worker

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

Site

Offline

One-off Sync

Less Network  
Reliance

Periodic Sync

Push Notifications

Did you know PWAs can 
enhance via native APIs?

if	(window.Windows)	{ 
		var	uiSettings	=	new	Windows.UI 
																								.ViewManagement 
																								.UISettings();	
		var	color	=	uiSettings 
															.getColorValue(
																	Windows.UI	
																		.ViewManagement 
																		.UIColorType	
																		.background	
); 
		if	(color.r	==	0	&&	color.g	==	0 
						&&	color.b	==	0)	{ 
				//	changes	for	Dark	Mode 
		} 
}

Detecting “dark mode”

if	(window.Windows)	{ 
		var	uiSettings	=	new	Windows.UI 
																								.ViewManagement 
																								.UISettings();	
		var	color	=	uiSettings 
															.getColorValue(
																	Windows.UI	
																		.ViewManagement 
																		.UIColorType	
																		.background	
); 
		if	(color.r	==	0	&&	color.g	==	0 
						&&	color.b	==	0)	{ 
				//	changes	for	Dark	Mode 
		} 
}

Detecting “dark mode”

if	(window.Windows)	{ 
		var	uiSettings	=	new	Windows.UI 
																								.ViewManagement 
																								.UISettings();	
		var	color	=	uiSettings 
															.getColorValue(
																	Windows.UI	
																		.ViewManagement 
																		.UIColorType	
																		.background	
); 
		if	(color.r	==	0	&&	color.g	==	0 
						&&	color.b	==	0)	{ 
				//	changes	for	Dark	Mode 
		} 
}

Detecting “dark mode”

if	(window.Windows)	{ 
		var	uiSettings	=	new	Windows.UI 
																								.ViewManagement 
																								.UISettings();	
		var	color	=	uiSettings 
															.getColorValue(
																	Windows.UI	
																		.ViewManagement 
																		.UIColorType	
																		.background	
); 
		if	(color.r	==	0	&&	color.g	==	0 
						&&	color.b	==	0)	{ 
				//	changes	for	Dark	Mode 
		} 
}

Detecting “dark mode”

if	(window.Windows)	{ 
		var	uiSettings	=	new	Windows.UI 
																								.ViewManagement 
																								.UISettings();	
		var	color	=	uiSettings 
															.getColorValue(
																	Windows.UI	
																		.ViewManagement 
																		.UIColorType	
																		.background	
); 
		if	(color.r	==	0	&&	color.g	==	0 
						&&	color.b	==	0)	{ 
				//	changes	for	Dark	Mode 
		} 
}

Detecting “dark mode”

https://aka.ms/dark-mode-pwa-demo

https://aka.ms/dark-mode-pwa-demo

We can and should use JavaScript, 
but thoughtfully & intentionally

Enhance the experience

Capabilities

U
s
e
r
	E
x
p
e
r
ie
n
c
e

PWAs start with a great web experience and then
enhance that experience for performance, resilience,
installation, and engagement

PWAs start with a great web experience and then
enhance that experience for performance, resilience,
installation, and engagement

Focus Markup
Design JavaScript

Thank you. 
 
 
 
 
 
@AaronGustafson 
@MSEdgeDev 
PWABuilder.com

© Copyright Microsoft Corporation. All rights reserved.

