
Breaking DevOps
Max Körbächer @ CodeRepublic

Stay connected

Co-Founder & Sr. Manager Cloud Native Engineering
@ Liquid Reply

Kubernetes Release Team

Cloud Native Enthusiast and Advocate

maxkoerbaecher; mkoerbi; mkorbi

Why DevOps
currently is broken

What is DevOps?

● Infrastructure Automation – create your systems, OS configs, and app deployments as code.
● Continuous Delivery – build, test, deploy your apps in a fast and automated manner.
● Site Reliability Engineering – operate your systems; monitoring and orchestration, sure, but also designing for

operability in the first place.

Blogs & Articles

Source: theagileadmin.com; AWS; every Medium Blog post about DevOps

What is DevOps?

The Principles of Flow

Make your work visible; Limit work in process (WIP); Reduce batch sizes; Reduce the number of
handoffs; Continually identify and address your bottlenecks; Eliminate hardships and waste in the
value stream

The Principles of Feedback

Design a safe system of work; See problems as they occur; Swam and solve problems to build new
knowledge; Keep pushing quality closer to the source; Enable optimizing for downstream teams

The Principles of Continual Learning & Experimentation

Enable an organizational learning and safety culture; Institutionalize the improvement of daily work;
Transform local discoveries into global improvements; Inject resilience patterns into our daily
work; Leaders reinforce a learning culture

The Phoenix Project

Source: The DevOps Handbook

What is DevOps?
Wiki

Everything clear now?

Nothing is clear

companies all do if differently

developer should become operations

operations should do development

“it is just IT, you should know it” - right, and your Orthopedist does also do
brain surgeries

DevOps appear when IT was
stressed

Remember?
● When you need to order new VMs (yes, order!)
● Developer complain about that the Operations doesn’t understand how to

run the App
● Operations complain about that Developer doesn’t know how to write a

good App
● Everyone else complains in general about IT and its costs
● Microservices everywhere (in the mouth), CI/CD tools hit the adoption,

business talking about bringing features faster to the client
● Less professionals on the market

DevOps worked well

It works when:
● you build it you run it (partially) is applicable
● system complexity can be explained on a

single piece of paper
● vertical, lean responsibility
● your team member can take over also other

domains tasks (not as expert, but to keep
alive)

and works well, but not for any case

Moving IT
Why DevOps (as we know it) is just an interim solution

architecture

releases per anno

design principles

test complexity

compatibility

front & back end + DB

2-4 major, 4-8 minor

commercial, one tech
stack, stability

unit + with the release

one version, one API

many services, many
storages, multi device

once or twice per day

best fit, flexibility, open
source, exchangeable
on every commit from
unit to functional tests

multiple version,
multiple API versions

Then Now/Next
DevOps

Filling the Gap

architecture

releases per anno

design principles

test complexity

compatibility

front & back end + DB

2-4 major, 4-8 minor

commercial, one tech
stack, stability

unit + with the release

one version, one API

many services, many
storages, multi device

once or twice per day

best fit, flexibility, open
source, exchangeable
on every commit from
unit to functional tests

multiple version,
multiple API versions

Then Now/Next

DevOps

Development +
Operations ???

Don’t take this slide to serious, but a DevOps Team which should focus
on a vertical capability can’t cover all aspects

Application Layer

Container Orchestration/K8s

Bare Metal VMs Cloud

Container
Engine CNI K8s Base

Components

Proxy Service Mash API Gateway

Container Orchestration & Infrastructure Layer

K8S &
APPLICATION

BASE

DEVELOPEMT &
DEPLYOMENT

OPERATION

Custom
App/Pod

Managed
App/Pod

Commercial
App/Pod

Container
Registry

Artefact
Repository

Build Pipeline
Artefact

Build
Container

Build
Container

Scan
Deployment

Source
Code/GIT

IDE

CVE
Scanner

Backend
as Service

DB as
Service

Operations Tooling

Monitoring Logging

Alerting
Anomaly
Detection

Secret
Management

SIEM

Chaos
Engineering

System complexity is growing

With growing system complexity, the underlying idea and
approach of devops can’t fulfill the needs.

for the good and the bad

Today platforms and systems
have to integrate in a variety of
other platforms and systems.

While many of them are
maintained, you still need to
know how to use, build (on) and
utilize them.

Today's platforms are more, deeper

What is often misunderstood, every topic is so
much more today:
● K8s, Container
● Serverless, ICP
● Cloud, Hybrid, Edge
● Monitoring, Logging, Tracing & Observability
● CICD, GitOps, Release Mgmt., Lifecycle
● Security, Hardening, Scanning, Intrusion

detection

DevOps

DevOps everyone and none
Site Reliability Engineering -> Gives the purpose to the Job

Broaden the expected responsibilities and field
of knowledge is valuable as well as actively
maintaining feedback loops.

But I believe tall vertical towers doesn’t deliver
faster, high quality well designed solutions.

Except you have big team which can cover all
aspects.

Application/Functions

Kubernetes

Public Cloud

SRE Team 1

SRE Team 3

SRE Team 2

For many SRE is just another name of DevOps, in fact it is very clear described
what is the purpose of SRE and how achieve a well SREism

And where did DevOps go?
DevOps makes Development working by supporting the integration

DevOps fills again a gap:

● how to run on public cloud?
● how to run on container?
● what I need to consider from

Kubernetes?
● how to control versions & releases?
● what is best to use to develop and

deliver an app?
● what I don’t have to reinvent?
● ...

apps

infrastructure of trust (cloud,
kubernetes, serverless)

services functions

App Delivery

Observability

CICD/GitOps

IaC
Release &
Lifecycle

Platform
Utilization

Test Auto.

With Public Cloud many things
got easier, but the amount of
available services is
overwhelming.

Moving on to a Kubernetes
based system brings new
opportunities but even more
complexity. And companies just
adopting it more and more.

We just start to enter a new
complexity

Kubernetes is
the Go To
Platform for the
next years

Where DevOps should be

apps services functions

infrastructure of trust (cloud,
kubernetes, serverless)

DevOps brings specific knowledge to integrate and run applications on a target platform.

DevOps is an advisor for platform admins and application developers, acting as a
mediation point.

DevOps = Integration Engineer & Architect

Making the implicit explicit

Implicitly the vast majority of DevOps
role descriptions includes our hot
topics

App Delivery

Observability

CICD/GitOps

IaC
Release &
Lifecycle

Platform
Utilization

Test Auto.

apps

infrastructure of trust (cloud,
kubernetes, serverless)

services functions

So with just excluding the other 50%
we have a nearly good role
description for an DevOps

In
te

gr
at

e
an

d
A

dv
ic

e
fo

r .
..

We just have to add some words to
make it explicitly clear and than we
can start the major challenge to live
this role!

The future teams
an idea

DevOps
Integrator & Advisor

Integrates a transparent release
management, enable observability and a
reproducible delivery of the whole stack

Ops

Und
er

st
an

d t
he

 ne
ed

s a
nd

 ta
rg

et
s o

f t
he

 to

be
 de

ve
lo

pe
d s

ys
te

m
 an

d e
ns

ur
es

 a

co
nt

ro
lle

d a
nd

 se
cu

re
 en

vir
on

m
en

t

Infra

Dev

Supports Dev to continuously deliver

functions/services and find the right design

for the target platform

ensure direct feedback and work
together on optimization

communicate your needs and get
advice for options

give insights on improving stability

Thank you!

What will be
your DevOps
journey?

