
Automate all the things with

CI/CD in GitHub Actions

Rob Allen, April 2024

Some intro here

How do we test and release software?

Rob Allen | social.akrabat.com/rob

Workflow to accept a code change
1. Checkout the source code
2. Install dependencies
3. Compile (or create container)
4. Run code style checks
5. Run tests
6. Send artifacts (logs, test output, etc.) to dev for debugging
7. Tell dev that it worked (or failed)

Rob Allen | social.akrabat.com/rob

Workflow to release a new version
1. Checkout the source code
2. Compile (or create container)
3. Upload container to registry (exe to Release)
4. Deploy to container orchestration platform
5. Publish release
6. Notify Slack

Rob Allen | social.akrabat.com/rob

We never get this right
every time!

Rob Allen | social.akrabat.com/rob

Humans are bad at repetitive tasks

Rob Allen | social.akrabat.com/rob

Humans are bad at repetitive tasks

That's why we invented computers

Rob Allen | social.akrabat.com/rob

Tests ensure our software works

CI ensures that we run them

CD releases it reliably

Rob Allen | social.akrabat.com/rob

Our repository is the centre

of our development world

Rob Allen | social.akrabat.com/rob

GitHub Actions runs scripts

when an event happens

Rob Allen | social.akrabat.com/rob

YAML all the way down!

sorry!

Rob Allen | social.akrabat.com/rob

From now on, we're mostly a cookbook of the way I do things!

.github/workflows/ci.yml
 name: CI
 on: [push, pull_request]
 jobs:
 qa:
 name: QA checks
 runs-on: ubuntu-latest
 steps:
 - name: "Say Hello"
 run: echo "Hello World"
 - name: "Say Goodbye"
 run: echo "All done"

Rob Allen | social.akrabat.com/rob

.github/workflows/ci.yml
 name: CI
 on: [push, pull_request]
 jobs:
 qa:
 name: QA checks
 runs-on: ubuntu-latest
 steps:
 - name: "Say Hello"
 run: echo "Hello World"
 - name: "Say Goodbye"
 run: echo "All done"

Rob Allen | social.akrabat.com/rob

.github/workflows/ci.yml
 name: CI
 on: [push, pull_request]
 jobs:
 qa:
 name: QA checks
 runs-on: ubuntu-latest
 steps:
 - name: "Say Hello"
 run: echo "Hello World"
 - name: "Say Goodbye"
 run: echo "All done"

Rob Allen | social.akrabat.com/rob

Events

Rob Allen | social.akrabat.com/rob

Green: Repo events - 33

Orange: Webhook

Magenta: Schedule

Manual

28 events

.github/workflows/ci.yml
 name: CI
 on: [push, pull_request]
 jobs:
 qa:
 name: QA checks
 runs-on: ubuntu-latest
 steps:
 - name: "Say Hello"
 run: echo "Hello World"
 - name: "Say Goodbye"
 run: echo "All done"

Rob Allen | social.akrabat.com/rob

.github/workflows/ci.yml
 name: CI
 on: [push, pull_request]
 jobs:
 qa:
 name: QA checks
 runs-on: ubuntu-latest
 steps:
 - name: "Say Hello"
 run: echo "Hello World"
 - name: "Say Goodbye"
 run: echo "All done"

Rob Allen | social.akrabat.com/rob

Success

Rob Allen | social.akrabat.com/rob

Failure

Rob Allen | social.akrabat.com/rob

We can easily see that Say Hello failed and that Say Goodbye didn't run

PHP quality checks

Rob Allen | social.akrabat.com/rob

Set up the pipeline
 name: PHP Checks
 on: [pull_request]
 jobs:
 php-checks:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v3

 - name: Create .env file
 run: cp .env.ci .env

Rob Allen | social.akrabat.com/rob

Set up the pipeline
 name: PHP Checks
 on: [pull_request]
 jobs:
 php-checks:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v3

 - name: Create .env file
 run: cp .env.ci .env

Rob Allen | social.akrabat.com/rob

Set up the pipeline
 name: PHP Checks
 on: [pull_request]
 jobs:
 php-checks:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v3

 - name: Create .env file
 run: cp .env.ci .env

Rob Allen | social.akrabat.com/rob

Grab PHP
 - name: Install PHP
 uses: "shivammathur/setup-php@v2"
 with:
 coverage: "pcov"
 php-version: "8.3.4"
 tools: composer:v2, cs2pr

Rob Allen | social.akrabat.com/rob

Dependencies
 - name: Run composer
 run: composer install --prefer-dist --no-progress
 --no-ansi --no-interaction

 - name: Install npm
 run: npm install

Rob Allen | social.akrabat.com/rob

We run composer inside the container so same PHP as prod. It only installs dev deps as prod deps are in Dockerfile build

Code quality
 - name: Check code style
 run: vendor/bin/phpcs -q --report=checkstyle | cs2pr

Rob Allen | social.akrabat.com/rob

cs2pr Turns checkstyle based XML-Reports into GitHub Pull Request Annotations via the Checks API.

Code quality
 - name: Check code style
 run: vendor/bin/phpcs -q --report=checkstyle | cs2pr

 - name: Run static analysis checks
 run: vendor/bin/phpstan analyse

Rob Allen | social.akrabat.com/rob

Code quality
 - name: Check code style
 run: vendor/bin/phpcs -q --report=checkstyle | cs2pr

 - name: Run static analysis checks
 run: vendor/bin/phpstan analyse

 - name: Run unit tests
 run: vendor/bin/phpunit -c phpunit-ci.xml --testsuite=unit

Rob Allen | social.akrabat.com/rob

Other checks
 - name: Check licenses of PHP dependencies
 # (see akrabat.com/check-licenses-of-composer-dependencies)
 run: php bin/check-licenses.php

Rob Allen | social.akrabat.com/rob

Other things you find, you can automate

Other checks
 - name: Check licenses of PHP dependencies
 # (see akrabat.com/check-licenses-of-composer-dependencies)
 run: php bin/check-licenses.php

 - name: Check we can cache routes
 run: php bash -c "php artisan route:cache
 && php artisan route:clear"

Rob Allen | social.akrabat.com/rob

Had a route compilation issue, so added a check

Other checks
 - name: Check licenses of PHP dependencies
 # (see akrabat.com/check-licenses-of-composer-dependencies)
 run: php bin/check-licenses.php

 - name: Check we can cache routes
 run: php bash -c "php artisan route:cache
 && php artisan route:clear"

 - name: Check tailwind-build has been run.
 run: npm run tailwind-build
 && [-z "$(git status --porcelain)"]

Rob Allen | social.akrabat.com/rob

Run tailwind-build and ensure that there are no modifications by checking that git status is empty

Use Docker? Run in Docker!
 - name: Docker Compose Pull
 run: docker compose pull

Rob Allen | social.akrabat.com/rob

Useful if you use Docker locally or deploy containers to prod via ECS, Kubernetes, etc. All my clients do this now.

Pull first as pull-only images are quicker to download than cache

Use Docker? Run in Docker!
 - name: Docker Compose Pull
 run: docker compose pull

 # Cache Docker layers
 - uses: jpribyl/action-docker-layer-caching@v0.1.1
 continue-on-error: true

Rob Allen | social.akrabat.com/rob

Caches built layers to speed things up

Use Docker? Run in Docker!
 - name: Docker Compose Pull
 run: docker compose pull

 # Cache Docker layers
 - uses: jpribyl/action-docker-layer-caching@v0.1.1
 continue-on-error: true

 - name: Start the containers
 run: docker compose up --build -d

Rob Allen | social.akrabat.com/rob

Tests that need the database
 - name: Ensure MySQL is available
 # (uses raphaelahrens/wait-for-it)
 run: docker-compose exec -T php ./wait-for-it -t 10 db:3306

Rob Allen | social.akrabat.com/rob

As we've use docker-compose as we do in dev, we have our database around

Tests that need the database
 - name: Ensure MySQL is available
 # (uses raphaelahrens/wait-for-it)
 run: docker-compose exec -T php ./wait-for-it -t 10 db:3306

 - name: Run migrations
 run: docker-compose exec -T php bash -c
 "php artisan migrate:fresh --seed"

Rob Allen | social.akrabat.com/rob

Tests that need the database
 - name: Ensure MySQL is available
 # (uses raphaelahrens/wait-for-it)
 run: docker-compose exec -T php ./wait-for-it -t 10 db:3306

 - name: Run migrations
 run: docker-compose exec -T php bash -c
 "php artisan migrate:fresh --seed"

 - name: Execute tests
 run: docker-compose exec -T vendor/bin/phpunit
 -c phpunit-ci.xml --testsuite=integration

Rob Allen | social.akrabat.com/rob

Upload assets
 - name: Upload test output
 uses: actions/upload-artifact@v2
 if: failure()
 with:
 name: failed-tests
 path: tests/output
 retention-days: 8

Rob Allen | social.akrabat.com/rob

This is from rst2pdf where our tests generate PDFs so we need to compare with reference

Also works for browser based acceptance tests, such as Playwright

Set a short retention period when uploading artifacts. If you don't get to it in a month, you're never going to.

Upload assets
 - name: Upload test output
 uses: actions/upload-artifact@v4
 if: failure()
 with:
 name: failed-tests
 path: tests/output
 retention-days: 8

Rob Allen | social.akrabat.com/rob

You can use conditionals to limit when an action is run

Upload assets
 - name: Upload test output
 uses: actions/upload-artifact@v4
 if: failure()
 with:
 name: failed-tests
 path: tests/output
 retention-days: 8

Rob Allen | social.akrabat.com/rob

Name is optional and it defaults to

path is what is uploaded. Directory or wildcard pattern

retention is for how long to keep

Everything we run in CI

we also run locally

Rob Allen | social.akrabat.com/rob

Tag and Release

Rob Allen | social.akrabat.com/rob

Let's look at releasing our software

One common task when closing a milestore is to create a tag and a GitHub Release

When a milestone is closed…
 on:
 milestone:
 types: [closed]

Rob Allen | social.akrabat.com/rob

do a full checkout…
 steps:
 - name: Checkout code
 uses: actions/checkout@v3
 with:
 ref: master
 fetch-depth: 0

Rob Allen | social.akrabat.com/rob

so we can create & push a tag…
 - name: Create Tag
 uses: rickstaa/action-create-tag@v1
 id: create-tag
 with:
 tag: "${{ github.event.milestone.title }}"
 message: "Tag ${{ github.event.milestone.title }}"

Rob Allen | social.akrabat.com/rob

Note that the milestone must be set as the tag name you want

and create a GitHub Release
 - name: Create GitHub Release
 uses: actions/github-script@v6
 with:
 script: |
 await github.rest.repos.createRelease({
 generate_release_notes: true,
 name: "${{github.event.milestone.title}}",
 tag_name: "${{github.event.milestone.title}}"
 });

Rob Allen | social.akrabat.com/rob

The github-script action allows use to write JS with the GitHub SDK available and authenticated

along with a new Milestone
 - name: 'Get next minor version'
 id: semvers
 uses: "WyriHaximus/github-action-next-semvers@v1"
 with:
 version: ${{github.event.milestone.title}}
 - name: 'Create new milestone'
 uses: "WyriHaximus/github-action-create-milestone@v1"
 with:
 title: ${{ steps.semvers.outputs.patch }}
 env:
 GITHUB_TOKEN: "${{ secrets.GITHUB_TOKEN }}"

Rob Allen | social.akrabat.com/rob

along with a new Milestone
 - name: 'Get next minor version'
 id: semvers
 uses: "WyriHaximus/github-action-next-semvers@v1"
 with:
 version: ${{github.event.milestone.title}}
 - name: 'Create new milestone'
 uses: "WyriHaximus/github-action-create-milestone@v1"
 with:
 title: ${{ steps.semvers.outputs.patch }}
 env:
 GITHUB_TOKEN: "${{ secrets.GITHUB_TOKEN }}"

Rob Allen | social.akrabat.com/rob

along with a new Milestone
 - name: 'Get next minor version'
 id: semvers
 uses: "WyriHaximus/github-action-next-semvers@v1"
 with:
 version: ${{github.event.milestone.title}}
 - name: 'Create new milestone'
 uses: "WyriHaximus/github-action-create-milestone@v1"
 with:
 title: ${{ steps.semvers.outputs.patch }}
 env:
 GITHUB_TOKEN: "${{ secrets.GITHUB_TOKEN }}"

Rob Allen | social.akrabat.com/rob

Secrets are created within the GitHub UI. You then pass them to the action as input or env var

Has to be explicit. An action can't just read them if it knows the name

Compile & upload binaries

Rob Allen | social.akrabat.com/rob

For rodeo, my Golang CLI app, I want to provide pre-built binaries for each release

Another common use case is uploading to Docker containers to a registry

When a release is published…
 on:
 release:
 types:
 - published

Rob Allen | social.akrabat.com/rob

build the binaries…
steps:
 # checkout, setup Go etc…

 - name: Build the Rodeo executables
 # (akrabat.com/building-go-binaries-for-different-platforms)
 run: ./build-exes.sh ${{ github.ref_name }}

Rob Allen | social.akrabat.com/rob

The github.ref_name is the tag name attached to the release - version number in my world

build-executables.sh is a script that builds all the versions of the binaries for a given tag

The script is more efficient than separate steps for each platform

and upload them
 - name: Upload the Rodeo binaries
 uses: actions/svenstaro/upload-release-action@v2
 with:
 repo_token: ${{ secrets.GITHUB_TOKEN }}
 tag: ${{ github.ref }}
 file: ./release/rodeo-*
 file_glob: true

Rob Allen | social.akrabat.com/rob

Build and push to ECR

Rob Allen | social.akrabat.com/rob

and of course we can do the same with Docker Images

Build container…
 on:
 release:
 types:
 - published

Rob Allen | social.akrabat.com/rob

Build container…
 on:
 release:
 types:
 - published

 steps:
 # checkout, etc…

 - name: Build Docker Image
 run: docker build --tag
 img-name:${{ github.ref_name }} .

Rob Allen | social.akrabat.com/rob

and push to ECR
 - name: Push to ECR
 uses: jwalton/gh-ecr-push@v1
 with:
 access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
 secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
 region: us-east-2
 local-image: img-name:${{ github.ref_name }}
 image: img-name:${{ github.ref_name }}, img-name:latest

Rob Allen | social.akrabat.com/rob

and push to ECR
 - name: Push to ECR
 uses: jwalton/gh-ecr-push@v1
 with:
 access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
 secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
 region: us-east-2
 local-image: img-name:${{ github.ref_name }}
 image: img-name:${{ github.ref_name }}, img-name:latest

Rob Allen | social.akrabat.com/rob

and push to ECR
 - name: Push to ECR
 uses: jwalton/gh-ecr-push@v1
 with:
 access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
 secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
 region: us-east-2
 local-image: img-name:${{ github.ref_name }}
 image: img-name:${{ github.ref_name }}, img-name:latest

Rob Allen | social.akrabat.com/rob

More!

Rob Allen | social.akrabat.com/rob

More!
• Secrets live in GitHub, not git!
• Use conditionals to save time & resources
• Don't like bash? Use Python with shell: python
• The GitHub cli (gh) is preinstalled
• Building a library? Use matrices to test on multiple PHPs
• Pre-built: https://github.com/marketplace?type=actions

Rob Allen | social.akrabat.com/rob

https://github.com/marketplace?type=actions
As you've probably seen in the various steps I've shown

To sum up

Rob Allen | social.akrabat.com/rob

CI and CD are just automated scripts run on events in your repo. We've looked at GitHub today, but all systems have a pipeline system

If you come across an error that can be caught, write a CI step for it.

If it's done in CI, it should be doable locally before pushing. make check!

“a deployment pipeline is an automated
manifestation of your process for getting
software from version control into the
hands of your users.”

David Farley

Rob Allen | social.akrabat.com/rob

David Farley & Jez Humble wrote Continuous Delivery, published by Addison Wesley

I want to leave you this thought.

Final thought

Thank you!

Rob Allen | social.akrabat.com/rob

	Workflow to accept a code change
	Workflow to release a new version
	.github/workflows/ci.yml
	.github/workflows/ci.yml
	.github/workflows/ci.yml
	Events
	.github/workflows/ci.yml
	.github/workflows/ci.yml
	Success
	Failure
	Set up the pipeline
	Set up the pipeline
	Set up the pipeline
	Grab PHP
	Dependencies
	Code quality
	Code quality
	Code quality
	Other checks
	Other checks
	Other checks
	Use Docker? Run in Docker!
	Use Docker? Run in Docker!
	Use Docker? Run in Docker!
	Tests that need the database
	Tests that need the database
	Tests that need the database
	Upload assets
	Upload assets
	Upload assets
	When a milestone is closed…
	do a full checkout…
	so we can create & push a tag…
	and create a GitHub Release
	along with a new Milestone
	along with a new Milestone
	along with a new Milestone
	When a release is published…
	build the binaries…
	and upload them
	Build container…
	Build container…
	and push to ECR
	and push to ECR
	and push to ECR
	More!

