
@BruntyCSP: Let’s Break Stuff

CONTENT SECURITY POLICIES
LET’S BREAK STUFF

@BruntyCSP: Let’s Break Stuff

BECAUSE YOU ALL TOTALLY CARE ABOUT THIS, RIGHT?!

ABOUT ME

▸ Senior Software Engineer at Viva IT  
(those folks in orange hoodies at some conferences & events
you may have been to)

▸ @Brunty

▸ @PHPem

▸ mfyu.co.uk

▸ matt@mfyu.co.uk

@BruntyCSP: Let’s Break Stuff

BLAH BLAH… JUST GET ON WITH THE TALK

THINGS I DO

▸ Dungeon master for D&D campaigns

▸ Mentor, lead & teach apprentices & junior developers

▸ Run & organise PHP East Midlands

▸ Speak at user groups and conferences

▸ Break production sites with incorrectly configured content
security policies

@BruntyCSP: Let’s Break Stuff

OH GOOD, FINALLY WE’RE GETTING STARTED

A TALK IN 3 PARTS

▸ XSS 

▸ CSP 

▸ Break stuff 

@BruntyCSP: Let’s Break Stuff

THE SCARY STUFF

@BruntyCSP: Let’s Break Stuff

FIRST, SOME BACKGROUND

WHAT IS CROSS-SITE-SCRIPTING (XSS)?

▸ XSS enables an attacker to inject client-side scripts into non-
malicious web pages viewed by other users

▸ In 2016 there was a 61% likelihood of a browser-based
vulnerability being found in a web application

▸ Of those browser based vulnerabilities, 86% were found to be
XSS related

▸ That’s just over 52% of all web application vulnerabilities 
https://www.edgescan.com/assets/docs/reports/2016-edgescan-stats-report.pdf

@BruntyCSP: Let’s Break Stuff

I MEAN, IT’S JUST A JOKE VULNERABILITY, RIGHT?!

WHAT CAN BE DONE WITH XSS?

▸ Put pictures of cats dogs in web pages

▸ alert(‘💩’);

▸ Rickroll a user

▸ Twitter self-retweeting tweet 
https://www.youtube.com/watch?v=zv0kZKC6GAM

▸ Samy worm 
https://en.wikipedia.org/wiki/Samy_(computer_worm)

@BruntyCSP: Let’s Break Stuff

WELL… MAYBE IT’S NOT A JOKE VULNERABILITY

WHAT CAN BE DONE WITH XSS?

▸ Make modifications to the DOM - replace a form action to point
to your own script to capture credentials.

▸ Load in additional scripts, resources, styles, images etc

▸ Access HTML5 APIs - webcam, microphone, geolocation

▸ Steal cookies (and therefore steal session cookies)

@BruntyCSP: Let’s Break Stuff

@BruntyCSP: Let’s Break Stuff

IT’S REALLY NOT A JOKE VULNERABILITY

WHAT CAN BE DONE WITH XSS?

https://www.wired.com/2008/03/hackers-assault-epilepsy-patients-via-computer/

@BruntyCSP: Let’s Break Stuff

TYPES OF XSS ATTACK

STORED XSS (AKA PERSISTENT OR TYPE I)

▸ Occurs when input is stored - generally in a server-side
database, but not always

▸ This could also be within a HTML5 database, thus never being
sent to the server at all

▸ who.is was a site Rickrolled by a TXT record in the DNS of a
website (yes, really)

@BruntyCSP: Let’s Break Stuff

TYPES OF XSS ATTACK

REFLECTED XSS (AKA NON-PERSISTENT OR TYPE II)

▸ Occurs when user input provided in the request is immediately
returned - such as in an error message, search string etc

▸ Data is not stored, and in some instances, may not even reach
the server (see the next type of XSS)

@BruntyCSP: Let’s Break Stuff

TYPES OF XSS ATTACK

DOM-BASED XSS (AKA TYPE-0)

▸ The entire flow of the attack takes place within the browser

▸ For example, if JavaScript in the site takes input, and uses
something like document.write based on that input, it can be
vulnerable to a DOM-based XSS attack

@BruntyCSP: Let’s Break Stuff

TYPES OF XSS ATTACK

SELF XSS

▸ Social-engineering form of XSS

▸ Requires the user to execute code in the browser

▸ Doing so via the console can’t be protected by a lot of methods

▸ Not considered a ‘true’ XSS attack due to requiring the user to
execute the code

@BruntyCSP: Let’s Break Stuff

TITLE TEXT
BODY LEVEL ONE

BODY LEVEL TWO
BODY LEVEL THREE

@BruntyCSP: Let’s Break Stuff

@BruntyCSP: Let’s Break Stuff

LET’S FIGHT BACK

@BruntyCSP: Let’s Break Stuff

HTTP RESPONSE HEADER TO HELP
REDUCE XSS RISKS

WHAT IS A CSP?

@BruntyCSP: Let’s Break Stuff

IT IS NOT A SILVER BULLET
WHAT IS A CSP?

@BruntyCSP: Let’s Break Stuff

IT IS AN EXTRA LAYER OF SECURITY
WHAT IS A CSP?

@BruntyCSP: Let’s Break Stuff

DECLARES WHAT RESOURCES ARE
ALLOWED TO LOAD

HOW DOES A CSP WORK?

@BruntyCSP: Let’s Break Stuff

BLOCKING THOSE PESKY CRYPTO-MINING
SCRIPTS THAT HAVE BEEN POPPING UP

IT CAN EVEN HELP WITH

@BruntyCSP: Let’s Break Stuff

BROWSER SUPPORT

@BruntyCSP: Let’s Break Stuff

Meh, it’s alright(ish)
Sorry IE users

@BruntyCSP: Let’s Break Stuff

CSP TO THE RESCUE!

WHAT CAN WE PROTECT?

▸ default-src

▸ script-src

▸ style-src

▸ img-src

▸ form-action

▸ update-insecure-requests

▸ and so much more…

@BruntyCSP: Let’s Break Stuff

FULL REFERENCE:
https://content-security-policy.com 
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

@BruntyCSP: Let’s Break Stuff

img-src *

ALLOWS ANY URL EXCEPT DATA:
BLOB: FILESYSTEM: SCHEMES.

@BruntyCSP: Let’s Break Stuff

object-src 'none'

DON’T LOAD RESOURCES FROM ANY
SOURCE

@BruntyCSP: Let’s Break Stuff

style-src 'self'

ALLOW LOADING FROM SAME
SCHEME, HOST AND PORT

@BruntyCSP: Let’s Break Stuff

script-src 'unsafe-inline'

ALLOWS USE OF INLINE SOURCE
ELEMENTS SUCH AS STYLE
ATTRIBUTE, ONCLICK, OR SCRIPT TAG
BODIES

@BruntyCSP: Let’s Break Stuff

DON’T USE UNSAFE-
INLINE

@BruntyCSP: Let’s Break Stuff

<script nonce="$RANDOM">...</script>

script-src 'self' 'nonce-$RANDOM'

@BruntyCSP: Let’s Break Stuff

Content-Security-Policy: default-src 'none'; script-

src 'self' https://*.google.com 'nonce-random123';

style-src 'self'; img-src 'self'; upgrade-insecure-

requests; form-action 'self';

@BruntyCSP: Let’s Break Stuff

I BROKE PRODUCTION WITH A BAD CSP
LEARN FROM MY MISTAKES

@BruntyCSP: Let’s Break Stuff

DON’T DO WHAT I DID

@BruntyCSP: Let’s Break Stuff

REPORT-URI

@BruntyCSP: Let’s Break Stuff

WHEN A POLICY FAILURE OCCURS,
THE BROWSER SENDS A JSON
PAYLOAD TO THAT URL

@BruntyCSP: Let’s Break Stuff

{

 "csp-report": {

 "blocked-uri": "self",

 "document-uri": "https://mysite.com",

 "line-number": 1,

 "original-policy": "script-src 'self'",

 "script-sample": "try { for(var lastpass_iter=0; lastpass...",

 "source-file": "https://mysite.com",

 "violated-directive": "script-src 'self'"

 }

}

@BruntyCSP: Let’s Break Stuff

REPORT-URI.IO

@BruntyCSP: Let’s Break Stuff

@BruntyCSP: Let’s Break Stuff

REPORT-ONLY

@BruntyCSP: Let’s Break Stuff

Content-Security-Policy-Report-Only: [policy]; report-

uri https://app.report-uri.io/r/default/csp/reportOnly;

@BruntyCSP: Let’s Break Stuff

TRIAL STUFF BEFORE
ENFORCING

@BruntyCSP: Let’s Break Stuff

THERE WILL BE NOISE,
LOTS OF NOISE

@BruntyCSP: Let’s Break Stuff

WAYS TO MAKE DEALING WITH A CSP EASIER

TIPS

▸ Have an easy and quick way to disable the CSP in production if
required

▸ Better yet, have a way to switch it from enforced to report only
so you can get violations reported to help you debug

▸ Add the CSP at an application level if you need a nonce

@BruntyCSP: Let’s Break Stuff

WAYS TO MAKE DEALING WITH A CSP EASIER

MULTIPLE POLICIES

▸ They complicate things

▸ For a resource to be allowed, it must be allowed by all policies
declared (problematic if an enforced policy)

▸ I tend to avoid them where possible on enforced policies

▸ But with report-only mode they can be very useful to deploy
and test multiple policies at the same time (as nothing breaks
for the user)

@BruntyCSP: Let’s Break Stuff

WAYS TO REMOVE BARRIERS IN DEVELOPMENT

NONCES

▸ Don’t generate multiple nonces in the same request (but do
generate a new nonce on each separate request)

▸ If using a templating engine (such as twig) - add the nonce as a
global so it’s available in every template by default

▸ Write a helper in your template engine to generate script tags
with a nonce if it’s available

@BruntyCSP: Let’s Break Stuff

DEMO TIME!
LET’S BREAK STUFF

@BruntyCSP: Let’s Break Stuff

@SCOTT_HELME

HE KNOWS HIS STUFF!

@BruntyCSP: Let’s Break Stuff

@MR_GOODWIN

HE FIRST INTRODUCED ME
TO WHAT A CSP IS

@BruntyCSP: Let’s Break Stuff

HOMEWORK TIME!

LINKS & FURTHER READING

▸ https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

▸ https://content-security-policy.com

▸ https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

▸ https://report-uri.io

▸ https://scotthelme.co.uk/just-how-much-traffic-can-you-generate-using-csp/

▸ https://www.edgescan.com/assets/docs/reports/2016-edgescan-stats-report.pdf

▸ http://theharmonyguy.com/oldsite/2011/04/21/recent-facebook-xss-attacks-show-increasing-
sophistication/

▸ https://github.com/Brunty/csp-demo

@BruntyCSP: Let’s Break Stuff

THANK YOU

@BruntyCSP: Let’s Break Stuff

QUESTIONS?
 
@BRUNTY  
JOIND.IN/TALK/9A570
NOTI.ST/BRUNTY
MFYU.CO.UK

