
Engineering
Documentation

Lorna Mitchell, Aiven

Lorna, DevRel at Aiven (cloud DBaaS, and Kafka), originally software engineer

Title: Engineering or Docs? Yes

Teasers: Why docs? People, tools, open source

docs.aiven.io



Engineering is about
solving problems and
helping people

@aiven_io ~ @lornajane

This talk is about engineering a great experience for readers AND writers

Using the best tools, combined in a great way

Engineers hate docs because it's big effort, little return

Docs does both - developer productivity, developer experience



Documentation enables
customer success

@aiven_io ~ @lornajane

Massively scalable

Types of documentation: internal wiki, blog, product docs, tutorial - use this advice for your own ends

The docs (any kind) ARE the product - needs a cross disciplinary team



Colleague enablement
Share the secrets with your team, on their level

@aiven_io ~ @lornajane

Story of LTAT: repeat open calendar slot, wiki page. Now 100 RSVPs, 25 attendees.

Aiven's docs has many contributors, across the org and external

See also: teaching engineers the design patterns of written content



Diátaxis https://diataxis.fr

@aiven_io ~ @lornajane

https://diataxis.fr
Formerly divio

UX: consistent structure, content types with the user journey in mind

Helps ENGINEERS to not have to think. Templates, mini style guide. Write easily and efficiently



Style guide
•use a specific template
•add hyperlinks
•use active wording
•formatting guidelines
•positive and respectful language
•titles, verbs and sentence case
•screenshots and example values
•what not to do

@aiven_io ~ @lornajane

Minimal style guide, in CONTRIBUTING. Some engineers have read it

All with examples, most of them quite silly



Content structure
Consistent navigation patterns
•products
•tools

 
Put developers in control by offering really good search
•we use Aiven for OpenSearch
• indexing multiple sources

@aiven_io ~ @lornajane

We should have indexed the tech content from the blog already

The platform section is huge and disastrous, we need to re-org

Search box front and centre - let the geeks feel in control



Docs as Code
Use the same tools and workflows as for code

@aiven_io ~ @lornajane

Existential. Use editor, or don't. Collaborate on branches, grep if you need to ...

Hard to hire for - not all writers have worked like this, or want to



Source control
•easy to work on many parallel changes
• identify of author and reviewer are known
•full change history for all pages
•collaboration tools for big or small changes

@aiven_io ~ @lornajane

GitHub or alternative



Text-based markup
•static site generator
•separate content and presentation
•reuse content (single sourcing)
•handle large changesets easily

@aiven_io ~ @lornajane

static sites: Gatsby, Jekyll, we're using Sphinx

Markup languages: goldilocks: asciidoc, markdown, rst is just right

Can programmatically generate content, it's just text

Content is ready to reuse elsewhere too, e.g. console - we should have done this sooner.

Biggest mistake on this project: no web devs



Text-based diagrams
Using https://mermaid-js.github.io

@aiven_io ~ @lornajane

https://mermaid-js.github.io
This is brilliant and we did include from the start



Tooling
Editors with:
•syntax highlighting
•side-by-side preview
•git support

 
GitHub web interface for quick edits
•preview feature for pull requests

@aiven_io ~ @lornajane

Remember to teach people what they need, not what you know - GitHub have good resources

Also: Sphinx autobuild



Automating a docs
platform

@aiven_io ~ @lornajane



Continuous integration
Pull request build does the work
•verify the build
•generate preview
•check hyperlinks
•prose linting with Vale

@aiven_io ~ @lornajane

Build preview, like spec-first. Everyone can collaborate

We had to turn down the link checking



Vale
Prose linter https://vale.sh/
•checks for valid words and can be taught technical

terms
•checks for correct use of trademarked terms
•requires all headings to be in sentence case
•suggests replacements for frequent mistakes

@aiven_io ~ @lornajane

https://vale.sh/
Endless possibilities! But Vale is already in the build

Kakfa, Flick

From the start, would not want to retrofit this now!



Continuous deployment
• immediate deploy on merge to main
•build static site and deploy
•repeat often

@aiven_io ~ @lornajane

Regret chosing Netlify with functions, no web devs, maybe AWS Amplify



Open Source Operation

@aiven_io ~ @lornajane

Building community for our community

docs work is in a public repo

content is CC-by-4.0 (requires attribution)



Contributors
Encourage contributors (internal or external)
•well-tended repository
•contributor guidelines
•office hours for internal contributors
•good review practice

@aiven_io ~ @lornajane

Project files, issues list with beginner issues, contrib/review guidelines, decent reviews

External contributors know what git/docs are, internal ones we offer onboarding and office hours

... they grow up to be maintainers one day!



Maintainers
Principle of shared responsibility
•reviewer guidelines in the repo
•pull requests need a single approver
•all git-enabled Aiveners can merge
•editorial review is available

 
Gatekeepers have no place in collaboration

@aiven_io ~ @lornajane

Reviewer guidelines, plus the machine checking

Governance is more about quality than direction. Docs are all directions at once



Engineering
Documentation

@aiven_io ~ @lornajane

Engineering tools make docs better

But also: motivation, UX, people, and collaboration



Resources
•https://docs.aiven.io/
•https://github.com/aiven/devportal/
•https://lornajane.net
•https://docsfordevelopers.com/
•https://idratherbewriting.com/

@aiven_io ~ @lornajane

https://docs.aiven.io/
https://github.com/aiven/devportal/
https://lornajane.net
https://docsfordevelopers.com/
https://idratherbewriting.com/
I only get invited back if you rate the talk


	Engineering is about solving problems and helping people
	Documentation enables customer success
	Colleague enablement
	Diátaxis https://diataxis.fr
	Style guide
	Content structure
	Docs as Code
	Source control
	Text-based markup
	Text-based diagrams
	Tooling
	Automating a docs platform
	Continuous integration
	Vale
	Continuous deployment
	Open Source Operation
	Contributors
	Maintainers
	Engineering Documentation
	Resources

