Kube Me This!

Kubernetes best practices

Karthik Gaekwad
@iterationl

Head of Cloud Native Engineering

Hello

*|I’'m Karthik Gaekwad

* Head of Cloud Native Engineering

- X3 W

@iterationl

Hello

I’'m Karthik Gaekwad

Oracle Cloud: Developer on the
Managed Kubernetes Team +
Developer Relations

Author of devops and Kubernetes
courses on Linkedln Learning

Super popular helloworld docker
container

@iterationl

Chaos Engineering https://verica.io/book/

OREILLY

Chaos
Want to learn more? Engineering

System Resiliency in Practice

Get the book in 5 minutes!

Casey Rosenthal
& Nora Jones

Confidential — Oracle Internal/Restricted/Highly Restricted

https://www.verica.io/book/

Today we will

We're going to talk about Kubernetes...

Break this down into 3 pillars...

* Development and Architecture
* Devops
* Enterprise Transformation

@iterationl

Development & Architecture

@iterationl

-~ .

MISTORY.COM

7 @iterationl

Microservices Design
e Start with Twelve-Factor App design

e Based on the principals of software design and deployment at
Heroku

 Development best practice that synergizes with devops
engineers

https://12factor.net/

Kubernetes Design Patterns

10 @iterationl

Kubernetes Deployments

What??
* Most common K8s object that is used for applications
running in Kubernetes.

 Deployment is a defined specification that is used to create
replica sets and associated pods.

Kubernetes Deployments

“I’m converting an application (monolith) to a
Kubernetes based architecture, what should my
deployment look like?”

Kubernetes Deployments

“I’m converting an application (monolith) to a
Kubernetes based architecture, what should my
deployment look like?”

2 Choices:
Single deployment model
Multi deployment model

13 @iterationl

Kubernetes Deployments

Single Multi
One single object for your Multiple independent
whole application, backed deployments for a larger
by multiple pods behind the application.
scenes. Components must work
: i together (microservices based
Think of this ke one Java o aetare)
ile for all parts of your . :
application. This is like having many

WAR files for your app.

Sometimes this can get hairy....

Working with multiple deployments

e

~=~$ kubectl get nods

incindiary-opossum-mariadb-7£fdf94dd7-s8czs

incindiary-opossum-wordpress-5¢7956bb47-k46nl
invisible-squirrel-drupal-85475955f4-nmszs
invisible-squirrel-mariadb-6894b489f-14kr4
nonplussed-swan-mariadb-57¢79587f7-4g4sh
ornery-lemur-joomla-75bb896c44-tlggv
ornery-lemur-mariadb-5975d6d95c-dvjrk

—
| -

18

@iterationl

READY
0/1
0/1
1/1
1/1
1/1
0/1
0/1

STATUS

Pending
Pending
Running
Running
Running
Pending
Pending

RESTARTS

CO P RPNOO

Working with multiple deployments

Consider using liveness and readiness probes.

Readiness probe

* User defined health check that tells Kubernetes when the container is ready to
serve request.

e K8s will route traffic to it once it’s

o

ready”

Liveness probe:
* User defined health check to indicate whether a container is running.

* If probe fails, K8s will kill the container and spawn a new one based on the restart
policy

Read more:

19 @iterationl

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

Working with multiple deployments ?

Consider using version endpoints for your pods/containers.
Can be any defined version strategy= git hash or a user defined version.

Assists with identification of what is actually running, and reference
back to the source code.

Allows easier debugging, especially when there are multiple teams
working on a single deployment, with frequent independent releases.

20 @iterationl

21

Authentication and

Authentication and Authorization

* Problem: The concept of a user doesn’t exist in K8s. You have to self
manage..

Do you know how you are authenticating with Kubernetes?

* Many ways to Authenticate
 Client Certs
e Static token file
e Service Account tokens
* OpenlD
 Webhook Mode
* And more ()

@iterationl

https://kubernetes.io/docs/reference/access-authn-authz/authentication/

Authentication and Authorization

Authorization Modules

¢ Node - A special-purpose authorizer that grants permissions to kubelets based on the pods they are scheduled to run. To learn more about using the Node authorization mode, see Node
Authorization.

* ABAC - Attribute-based access control (ABAC) defines an access control paradigm whereby access rights are granted to users through the use of policies which combine attributes
together. The policies can use any type of attributes (user attributes, resource attributes, object, environment attributes, etc). To learn more about using the ABAC mode, see ABAC Mode.

* RBAC - Role-based access control (RBAC) is a method of regulating access to computer or network resources based on the roles of individual users within an enterprise. In this context,
access is the ability of an individual user to perform a specific task, such as view, create, or modify a file. To learn more about using the RBAC mode, see RBAC Mode

» When specified RBAC (Role-Based Access Control) uses the rbac.authorization.k8s.io API group to drive authorization decisions, allowing admins to dynamically configure

permission policies through the Kubernetes API.
¢ Toenable RBAC, start the apiserver with --authorization-mode=RBAC .

* Webhook - A WebHook is an HTTP callback: an HTTP POST that occurs when something happens; a simple event-notification via HTTP POST. A web application
implementing WebHooks will POST a message to a URL when certain things happen. To learn more about using the Webhook mode, see Webhook Mode.

@iterationl

https://kubernetes.io/docs/reference/access-authn-authz/authorization/

Authentication and Authorization

 Protip: Nobody uses ABAC anymore. Don’t be that guy....

e RBAC s the defacto standard

 Based on roles and role bindings
* Good set of defaults:

 Can use multiple authorizers together, but can get confusing.
e 1%t authorizer to authorize passes authz

@iterationl

https://github.com/uruddarraju/kubernetes-rbac-policies

Loggi‘ng and
Monitorng

Logging and Monitoring

kubectl logs and tail commands only takes you so far...

Invest in a logging and monitoring strategy early on before you go to
production.

Gives engineers the expertise to debug and monitor applications.

28 @iterationl

More time up front to play with tooling

Less time learning tooling during prod issues

Logging and Monitoring

* Your existing tooling most likely plays well with Kubernetes.
* Open source is a viable option as well.

* CNCF ecosystem:
 EFK stack for logging
 Prometheus and Grafana for monitoring

30 @iterationl

Containers...

Container Image Best Practices

* Image Sizes

GOAL: Smaller the image, the better

* Less things for an attacker to exploit.

 Quicker to push, quicker to pull.

Container Image Best Practices
GOAL: Don’t rely on :latest tag

e :latest image yesterday might not be :latest image tomorrow
* Instead, you'd want to know what specific version you’re operating with.

Container Image Best Practices
GOAL: Consider using a private registry

Enterprise concerns for data storage.

Registry physically closer to your Kubernetes cluster
Quicker image pulls = faster deployments to Kubernetes
Consider using the your cloud provider for the registry

34 @iterationl

—

ST S e
ey

P
Ll

‘clzl'\’lw

&’ﬂ&;.il}iur > o Wt

\\
b

b

gres

-

Managed Kubernetes Services

Should | install my own, or use a managed service?

Managed Kubernetes Services

Pros:
Offload control plane management to the provider.
Less maintenance headache.
Spend time working on your apps, and required infrastructure.

Ccons:
Not 100% customizable.
Hidden costs.

General guidance: Use it, unless you have a non standard usecase.

37 @iterationl

Cluster Management

Dev/Test/Production clusters strategies?

Cluster Management Strategies

* Two primary strategies in play:
e Utilize different namespaces in single cluster
» Utilize different clusters for dev/test/prod

Cluster Management Strategies
(Namespaces)

Single cluster, with multiple namespaces
» “dev/test/prod”

Access control via kubeconfig to only have rights to a single namespace.
Typically used in startups or companies with smaller ops teams.
Pro: single cluster, so lesser management.

Con: cluster issues will cause all environments to experience issues.
Read more:

40 @iterationl

https://kubernetes.io/blog/2016/08/kubernetes-namespaces-use-cases-insights/

Cluster Management Strategies (Separate
clusters)

Multiple unique clusters for separation of concerns
* Unique dey, test and production clusters

Easier to implement with managed services (one click)
* Access control can be implemented in cloud layer, flows down to kubeconfig file.

Recommended approach for enterprises.

Cons:
* More environments to manage

41 @iterationl

Tag your nodes

Multiple clusters = multiple nodes.

Be diligent about labeling nodes on creation so that you have better
control over your cloud infrastructure.

Kubernetes has concept of labels, use it!!

43 @iterationl

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Pipelines

44 @iterationl

Pipelines

K8s allows you to build a devops pipeline.
1. Build artifacts B

2. Test code | __ Accomplish with
3. Push to registry Cl/CD Tooling
4. Optionally Deploy to K8s

Chance to modernize infra if you haven’t already

Cloud Native Enterprise Transformation

46 @iterationl

il et

Nis application.ir

op 4 derstand hov

ep 2.

48 @iterationl

Know your teams

Every organization is different.
Build your cloud native transformation around your teams.
Need equal expertise in development, operations and firefighting.

Organize into development, devops and SRE teams.

Leverage OCI + Opensource technologies.
Watch CNCF space because landscape changes (

49 @iterationl

https://www.cncf.io/

