
Karthik Gaekwad
@iteration1
Head of Cloud Native Engineering

Kube Me This!
Kubernetes best practices

• I’m Karthik Gaekwad

•Head of Cloud Native Engineering

Hello

@iteration1

I’m Karthik Gaekwad

Oracle Cloud: Developer on the
Managed Kubernetes Team +
Developer Relations
Author of devops and Kubernetes
courses on LinkedIn Learning
Super popular helloworld docker
container

Hello

@iteration1

Confidential – Oracle Internal/Restricted/Highly Restricted4

https://verica.io/book/

Want to learn more?

Get the book in 5 minutes!

verica.io/book

Chaos Engineering

https://www.verica.io/book/

Today we will

We’re going to talk about Kubernetes…
Break this down into 3 pillars…
• Development and Architecture
• Devops
• Enterprise Transformation

@iteration15

@iteration16

Development & Architecture

@iteration17

Microservices Design
• Start with Twelve-Factor App design
• https://12factor.net
• Based on the principals of software design and deployment at

Heroku
• Development best practice that synergizes with devops

engineers

@iteration18

https://12factor.net/

Kubernetes Design Patterns

@iteration110

Kubernetes Deployments
What??
• Most common K8s object that is used for applications

running in Kubernetes.
• Deployment is a defined specification that is used to create

replica sets and associated pods.

@iteration111

Kubernetes Deployments
“I’m converting an application (monolith) to a

Kubernetes based architecture, what should my
deployment look like?”

@iteration112

Kubernetes Deployments
“I’m converting an application (monolith) to a

Kubernetes based architecture, what should my
deployment look like?”

@iteration113

2 Choices:
Single deployment model
Multi deployment model

Single

• One single object for your
whole application, backed
by multiple pods behind the
scenes.

• Think of this like one Java
WAR file for all parts of your
application.

Multi

• Multiple independent
deployments for a larger
application.

• Components must work
together (microservices based
architecture)

• This is like having many
WAR files for your app.

@iteration114

Kubernetes Deployments

Working with multiple deployments
Sometimes this can get hairy….

@iteration118

Working with multiple deployments
• Consider using liveness and readiness probes.
• Readiness probe
• User defined health check that tells Kubernetes when the container is ready to

serve request.
• K8s will route traffic to it once it’s “ready”

• Liveness probe:
• User defined health check to indicate whether a container is running.
• If probe fails, K8s will kill the container and spawn a new one based on the restart

policy

• Read more: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-
probes

@iteration119

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

Working with multiple deployments

• Consider using version endpoints for your pods/containers.
• Can be any defined version strategy= git hash or a user defined version.
• Assists with identification of what is actually running, and reference

back to the source code.
• Allows easier debugging, especially when there are multiple teams

working on a single deployment, with frequent independent releases.

@iteration120

Authentication and
Authorization

@iteration121

Authentication and Authorization
• Problem: The concept of a user doesn’t exist in K8s. You have to self

manage..
• Do you know how you are authenticating with Kubernetes?
• Many ways to Authenticate
• Client Certs
• Static token file
• Service Account tokens
• OpenID
• Webhook Mode
• And more (https://kubernetes.io/docs/reference/access-authn-authz/authentication/)

@iteration1

https://kubernetes.io/docs/reference/access-authn-authz/authentication/

Whatever you do,
DO NOT YOLO!

Goal: Pick a strategy that
fits your use case

You can pick an authz
strategy..

If you DO NOT YOLO…

Authentication and Authorization

@iteration1

https://kubernetes.io/docs/reference/access-authn-
authz/authorization/

https://kubernetes.io/docs/reference/access-authn-authz/authorization/

Authentication and Authorization
• Pro tip: Nobody uses ABAC anymore. Don’t be that guy….

• RBAC is the defacto standard
• Based on roles and role bindings
• Good set of defaults: https://github.com/uruddarraju/kubernetes-rbac-policies

• Can use multiple authorizers together, but can get confusing.
• 1st authorizer to authorize passes authz

@iteration1

https://github.com/uruddarraju/kubernetes-rbac-policies

Logging and
Monitoring

27

Logging and Monitoring
• kubectl logs and tail commands only takes you so far…
• Invest in a logging and monitoring strategy early on before you go to

production.
• Gives engineers the expertise to debug and monitor applications.

@iteration128

More time up front to play with tooling
==

Less time learning tooling during prod issues

@iteration129

Logging and Monitoring
• Your existing tooling most likely plays well with Kubernetes.
• Open source is a viable option as well.
• CNCF ecosystem:
• EFK stack for logging
• Prometheus and Grafana for monitoring

@iteration130

Containers…

Confidential – Oracle Internal/Restricted/Highly Restricted31

Container Image Best Practices
• Image Sizes

GOAL: Smaller the image, the better

• Less things for an attacker to exploit.
• Quicker to push, quicker to pull.

@iteration132

Container Image Best Practices
GOAL: Don’t rely on :latest tag

• :latest image yesterday might not be :latest image tomorrow
• Instead, you’d want to know what specific version you’re operating with.

@iteration133

Container Image Best Practices
GOAL: Consider using a private registry

• Enterprise concerns for data storage.
• Registry physically closer to your Kubernetes cluster
• Quicker image pulls = faster deployments to Kubernetes
• Consider using the your cloud provider for the registry

@iteration134

35

Devops

Managed Kubernetes Services

Should I install my own, or use a managed service?

@iteration136

Managed Kubernetes Services
Pros:

Offload control plane management to the provider.
Less maintenance headache.
Spend time working on your apps, and required infrastructure.

Cons:
Not 100% customizable.
Hidden costs.

General guidance: Use it, unless you have a non standard usecase.

@iteration137

Cluster Management
Dev/Test/Production clusters strategies?

38

Cluster Management Strategies
• Two primary strategies in play:
• Utilize different namespaces in single cluster
• Utilize different clusters for dev/test/prod

@iteration139

Cluster Management Strategies
(Namespaces)
• Single cluster, with multiple namespaces
• “dev/test/prod”

• Access control via kubeconfig to only have rights to a single namespace.
• Typically used in startups or companies with smaller ops teams.
• Pro: single cluster, so lesser management.
• Con: cluster issues will cause all environments to experience issues.
• Read more: https://kubernetes.io/blog/2016/08/kubernetes-namespaces-use-cases-insights/

@iteration140

https://kubernetes.io/blog/2016/08/kubernetes-namespaces-use-cases-insights/

Cluster Management Strategies (Separate
clusters)
• Multiple unique clusters for separation of concerns
• Unique dev, test and production clusters

• Easier to implement with managed services (one click)
• Access control can be implemented in cloud layer, flows down to kubeconfig file.

• Recommended approach for enterprises.
• Cons:
• More environments to manage

@iteration141

Tagging nodes

@iteration142

Tag your nodes
• Multiple clusters = multiple nodes.
• Be diligent about labeling nodes on creation so that you have better

control over your cloud infrastructure.
• Kubernetes has concept of labels, use it!!
• https://kubernetes.io/docs/concepts/overview/working-with-

objects/labels/

@iteration143

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Pipelines

@iteration144

Pipelines
K8s allows you to build a devops pipeline.
1. Build artifacts
2. Test code
3. Push to registry
4. Optionally Deploy to K8s
Chance to modernize infra if you haven’t already

@iteration145

Accomplish with
CI/CD Tooling

@iteration146

Cloud Native Enterprise Transformation

How to start?
Where to start?

@iteration147

5 easy steps!
Start small…
Step 1: Get experience with K8s clusters.
Step 2: Take one application or microservice and convert to K8s.
Step 3: Run this application in a production setting.
Step 4: Understand how to manage and firefight.
Step 5: Goto step 2.

@iteration148

Know your teams
• Every organization is different.
• Build your cloud native transformation around your teams.
• Need equal expertise in development, operations and firefighting.
• Organize into development, devops and SRE teams.

• Leverage OCI + Opensource technologies.
• Watch CNCF space because landscape changes (https://www.cncf.io/)

@iteration149

https://www.cncf.io/

KEEP CALM
AND

KUBE ON
@iteration1

