
Iteratively Decoupling Your 
Existing Drupal Site With 
Gatsby
DrupalCon North America
April 13, 2021

Resources: http://bit.ly/iterative-dc

• Brian Perry

• Matthew Ramir



2

Brian Perry
Front of the Front End

• Lover of all things components…

• …and all things Nintendo (currently playing Ori and the Blind Forest)

• @bricomedy

• brianperry.dev

Matt Ramir
Back of the Front End

• Lover of all things devops

• … and all things outdoors (excited its hiking season)

• @crasx

• Ramir.dev

A Couple of 
Decouplers

YOUR HOSTS





Justifying a Decoupled Build
Struggling with cost vs benefit

Front End Structure
A single codebase serving multiple front ends

Hydrating Gatsby
How we got data from Drupal to the frontend

Workflow Changes
The impact of introducing static builds

The Blurring Line Between Front Ends
The impact of managing multiple component libraries



5

The Ask

A phased approach to a redesign

• Two templates with a completely new design

• Large amount of new behaviors and animations not 
present on the existing site

• Rest of site mainly gets a cosmetic overhaul, updating 
global styles in line with new design

InVision Concept



6

I’ve seen this movie before

We’ve considered decoupling in the past

• Unable to justify full scale overhaul

• Needed to balance effort with competing priorities

• Some content on site might not benefit greatly from 
decoupling

Redesign concepts put us at a similar crossroads 

• Leveraging a JS framework was desirable for new 
design concepts…

• …but not necessary for the majority of the site

• Decoupling entire site would greatly delay what is 
essentially just shipping 2 new pages

So what changed this time?



7

- Us, not sure if this was even possible

Could we start by only decoupling two pages on our 
existing site?



8

Turns Out We Could 🎉

Initially launched with:

• Two pages built statically with Gatsby

• All other content rendered by Drupal

Long-term groundwork:

• Any page on the site can be rendered primarily by either 
React or Twig



Justifying a Decoupled Build
Struggling with cost vs benefit

Front End Structure
A single codebase serving multiple front ends

Hydrating Gatsby
How we got data from Drupal to the frontend

Workflow Changes
The impact of introducing static builds

The Blurring Line Between Front Ends
The impact of managing multiple component libraries



10

One Site, Multiple Front Ends



11

Project Structure

• Monorepo style approach in single repository

• Three main top level directories:

• /fe-global

• /docroot (drupal)

• /gatsby

Front end globals:

• Sass partials 

• Global styles

• design tokens



12

React

Focused on building functional components with as 
little internal state as possible

Different data contexts:

• Data sourced from Gataby’s GraphQL API

• Directly within Drupal

• Hardcoded data

Heavy use of storybook during initial phase



13

Drupal

Content Model:

• Created new content types for decoupled page templates

• Continued using paragraphs 

• Surprisingly reasonable to access data via GraphQL
API

• High level of layout flexibility

Theme:

• Still have traditional Drupal theme

• Imports partials and tokens from fe-globals as needed



Justifying a Decoupled Build
Struggling with cost vs benefit

Front End Structure
A single codebase serving multiple front ends

Hydrating Gatsby
How we got data from Drupal to the frontend

Workflow Changes
The impact of introducing static builds

The Blurring Line Between Front Ends
The impact of managing multiple component libraries



15

Configuring gatsby-source-drupal



16

Wiring data to components



17

Wiring data to components



18

Wrapping it all up



Justifying a Decoupled Build
Struggling with cost vs benefit

Front End Structure
A single codebase serving multiple front ends

Hydrating Gatsby
How we got data from Drupal to the frontend

Workflow Changes
The impact of introducing static builds

The Blurring Line Between Front Ends
The impact of managing multiple component libraries



20

Building the site
• npm ci && npm run build

• cp -R gatsby/public docroot/public

• composer install && vendor/bin/blt artifact:deploy



21

Serving Gatsby and Drupal



22

Caching Considerations



23

Other Workflow Changes

• We decided a button to trigger a deployment was good enough for the needs of 

the content team.

• Contributed back a Bitbucket plugin to build_hooks module that triggers a CI 

pipeline

• Live previews enabled in production, not yet a critical part of workflow

• Appreciated the patience shown by our marketing team as this workflow 

evolved…

Implemented a "magic 
button” to trigger Gatsby 
builds

Live previews using Gatsby 
Cloud



Justifying a Decoupled Build
Struggling with cost vs benefit

Front End Structure
A single codebase serving multiple front ends

Hydrating Gatsby
How we got data from Drupal to the frontend

Workflow Changes
The impact of introducing static builds

The Blurring Line Between Front Ends
The impact of managing multiple component libraries



25

A Drupal Sandwich with React Bread



26

Syndicating React Header 
and Footer to Drupal
• Created ‘exportable’ version of header and footer 

components

• Used webpack configuration that used header 
and footer as entry points.

• Bundle components into dist directory in Drupal 
theme



27

Component Module

Simplifies Drupal integration

• Define configuration in .yml file alongside js

• Derives component block from config

• Can also specify form configuration 

• Form config values added to markup as data 
attributes



28

Making GraphQL Data 
Available Outside of Gatsby
• Initially hardcoded menu data

• Now importing cached menu data from Gatsby 
build

• Feels a bit fragile, but working nicely thus far

• Gatsby build needs to run before Drupal build



29

Why can’t I just use
this component?

React Components vs. Drupal Components

• Felt like an arbitrary divide to wider team

• Made ongoing design discussions challenging

• Need to create more React versions of Drupal 
components to support design

Possible improvements:

• Syndicate Drupal markup to Gatsby

• We’re doing this, but it is a little dirty…

• This is a solid case for using native web 
components



30

An iterative approach doesn’t eliminate all the 
challenges of decoupling.

In fact, it can introduce some new ones.



31

But it can be an effective way to prove the fit for 
your organization.

For us, it was the difference between decoupling 
now or decoupling never.



32

Visit:

https://drupalcontributions.opensocial.site

Decoupled Menus Mentored Contribution

Today at 2 PM

Contribution Week



Thank you.

Brian Perry
Front End Architect

brian.perry@bounteous.com

Matthew Ramir
Sr. Web Developer

Q&A
(Also, we’d love to hear your session feedback)

@bricomedy / brianperry.dev
Matthew.ramir@bounteous.com
@crasx


