
Coding Fast
and Slow

Prof. Daniel
Kahneman

Mar 5, 1934 – Mar 27, 2024

"for having integrated insights
from psychological research into

economic science, especially
concerning human judgment and

decision-making under uncertainty"

Economics?

× ECON101: People are rational; that’s why markets
work.

× - Nope, they aren’t; here’s 50 years of study.
× - Oh, wow, they really aren’t. It probably has a

profound effect on economics! Here’s a Nobel
Prize for ya!

× ECON101: People are rational; that’s why markets
work.

A bat and a ball cost $1.10 in total.

The bat costs $1 more than the ball.

How much does the ball cost?

How much does the ball cost?

0.10 + (1.00+0.10) = 1.20

0.05 + (1.00+0.05) = 1.10

Baruch Sadogursky - @jbaruch

× Developer Productivity Advocate
× Gradle Inc
× Development -> DevOps -> #DPE

shownotes

× speaking.jbaru.ch
× Slides
× Video
× All the links!

Two systems x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and lazy

I recognize this
pattern!

Wait, let’s think
about that!

class UniqueWords {
public static void main(String[] args) throws IOException {

if (args.length != 1) {
throw new IllegalArgumentException("Invalid argument");

}
Set<String> words = new HashSet<>();
for (String line : Files.readAllLines(Path.of(args[0]))) {

// Ignore commented lines
if (!line.startsWith("#") || !line.startsWith("//")) {

Collections.addAll(words, line.split("\\W+"));
}

}
System.out.println(”Count of unique words: " + words.size());

}
}

You have “mental fuel”

Attention and Capacity Limits in Perception: A Cellular Metabolism Account

× BNIRS and oxCCO
× Cellular Metabolism as Mental Fuel
× Finite Energy Supply
× High Load Mode vs Low Load Mode

23

Which system do we use for coding?
x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and Eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and Lazy

effortless

29

public class DiscountCalculator {
public static void main(String[] args) {

calculateDiscount(100, 15);
}

public static void calculateDiscount(double price, double discount) {
double finalPrice = price - (price * discount / 100);
System.out.println("The final price after a " + discount + "%

discount is: " + finalPrice);
}

}

How Many Triangles?

public class TaxCalculator {
public static void main(String[] args) {

calculateTax(100, 5);
}

public static void calculateTax(double amount, double taxRate) {
double totalAmount = amount + (amount * taxRate);
System.out.println("The total amount with tax: " + totalAmount);

}
}

The problem:

× You deplete your fuel by context-
switching

× You’re not in the flow because of
context-switching

× Loose-loose: you need more fuel
needed, but you have less fuel

When we are tired, we produce worse code

× "Developers are cutting corners on
quality when fatigued.”

(duh)

But We don’t know when to quit

x Default parole decision: deny
x Fewer paroles when judges are

tired/hungry
x Granting parole needs System 2 thinking
x Judges unaware of switching to System 1

Real-life outcome: you run on system one
x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and Eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and Lazy

Real-life outcome: you run on system one
x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and Eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and Lazy

10,000 hours of practice move
some system 2 activities to system 1

× Driving
× Golf
× Tennis
× Music playing
× Safety drills for fire fighters

I recognize this
pattern!

Wait, let’s think
about that!

Real-life outcome: you run on system one
x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and Eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and Lazy

Which sucks less?

Bad code
“OK” code

The problem of “ok code”

It looks “OK” to us
It looks

“OK” to PR
review

It looks
“OK” to

pipelines

System
1

System
1

System
1

Next thing
you know:

You have an
“ok” product

Invest in
The goal: Have enough mental fuel to last all day

Time Management Strategies

× Time Blocking
× Pomodoro Technique

Time Management Strategies

× Time Blocking
× Pomodoro Technique
× Task Batching

× Block time
× Batch tasks
× Allow access

Mindfulness and Cognitive Practices

× Mindfulness and Meditation
× Reflective Practices
× Single-tasking

Workspace and Interruption Management

× Workspace Organization
× Notification Management
× Prioritization Techniques

Physical and Mental Well-being

× Physical Exercise
× Breaks and Downtime

And… Developer productivity Engineering!

Developer Productivity Engineering

Foster Faster Feedback

Eliminate Toil for
Developers

Collaborate through
Effective Tooling

Prioritize Automation
and Eliminate
Bottlenecks

Embrace Rigorous
Observability for

Proactive Improvement

Dedicated
Organizational Mindset

Outcomes Over Output

feedback efficiency

× IDE: Sub-seconds (I type, it marks it red)
× Build: Seconds
× CI: Minutes
× Production: Hours/Days

Fe
ed

ba
ck

 T
im

e

Distance from Developers

Expected Real

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

Two types of feedback

x e.g., CI/CD
x we never wait for it
x results are distracting

x e.g., build
x we’ll wait for it in the flow
x we’ll be pissed off when it’s slow

Fe
ed

ba
ck

 T
im

e

Distance from Developers

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

synchronous asynchronous

Commit time

“Faster foster feedback” saves mental fuel

Speeding up local
build minimizes

context switch

Less
context
switch
saves

mental fuel

Run on
System 2

all-day

How can we engineer less context switches?
× Measure local build times!
× Avoid building and testing what didn’t change
× Speed up what can’t be avoided
× Fight evil flaky tests!
× Watch your build like a hawk for degradations

What you can do today (for free)

× Parallel local
× Local caching
× Remote caching*
× Build Scans
× Win Prizes (a.k.a. speed challenge)

What your company should pay for

× All the books (see shownotes)
× Top development hardware
× Develocity (or similar)

Learn more and try it today!
× Take the Gradle/Maven Speed

Challenge
× Be DPE Agent of Change!
× Read the DPE Handbook
× Watch the DPE Summit videos

x speaking.jbaru.ch

