
Horacio Gonzalez
2023-07-10

WebComponents in 2023:
A Complete Exploration

Who are we?
Introducing myself and
introducing OVHcloud

Horacio Gonzalez

@LostInBrittany
Spaniard Lost in Brittany

OVHcloud

30 Data Centers
in 12 locations

34 Points of Presence
on a 20 TBPS Bandwidth Network

2200 Employees
worldwide

115K Private Cloud
VMS running

380K Physical Servers
running in our data centers

1 Million+ Servers
produced since 1999

300K Public Cloud
instances running

1.5 Million Customers
across 132 countries

1.5 Billion Euros Invested
since 2016

20+ Years in Business
Disrupting since 1999

P.U.E. 1.09
Energy efficiency indicator

3.8 Million Websites
hosting

Web Cloud & Telcom

Private Cloud

Public Cloud

Storage

Network & Security

We want the code!

https://github.com/LostInBrittany/web-components-in-2023/

https://github.com/LostInBrittany/web-components-in-2023/

What the heck are web component?
The 3 minutes context

Web Components

Web standard W3C

Web Components

Available in all modern browsers:
Firefox, Safari, Chrome

Web Components

Create your own HTML tags
Encapsulating look and behavior

Web Components

Fully interoperable
With other web components, with any framework

SHADOW DOM TEMPLATESCUSTOM ELEMENTS

Web Components

 To define your own HTML tag

Custom Element

<body>
 ...
 <script>

window.customElements.define('my-element',
class extends HTMLElement {...});

 </script>
 <my-element></my-element>
</body>

To encapsulate subtree and
style in an element

Shadow DOM

<button>Hello, world!</button>
<script>
var host = document.querySelector('button');
const shadowRoot = host.attachShadow({mode:'open'});
shadowRoot.textContent = 'こんにちは、影の世界!';
</script>

To have clonable document template

Template

<template id="mytemplate">

 <div class="comment"></div>
</template>

var t = document.querySelector('#mytemplate');
// Populate the src at runtime.
t.content.querySelector('img').src = 'logo.png';
var clone = document.importNode(t.content, true);
document.body.appendChild(clone);

But in fact, itʼs just an element…

● Attributes

● Properties

● Methods

● Events

Sometimes I feel a bit grumpy
The stories of the grumpy old speaker...

On Polymer tour since 2014

Web components == Revolution

Im
ag

e:
 b

u.
ed

u

http://www.bu.edu/today/2014/lego-man/

Building a world brick by brick

Im
ag

es
: B

itR
eb

el
s

&
Br

ic
ks

et

http://www.bitrebels.com/design/lego-stilettos-a-geek-girls-dream-come-true/
http://images.brickset.com/sets/images/10234-1.jpg?201305300927

Is the promise unfulfilled?

It's 2023 now, where is your revolution, dude?

Is it a conspiracy?

Am I only a dreamer?

Well, revolution IS there

But it's a silent one...

I as looking for a great example

New Reddit runs on Web Components

Often hidden in plain sight

https://github.com/github/github-elements
https://sap.github.io/ui5-webcomponents/
https://github.com/microsoft/vscode-webview-ui-toolkit
https://learn.microsoft.com/en-us/fluent-ui/web-components/
https://github.com/RedHat-UX/red-hat-design-system
https://web.dev/ps-on-the-web/#web-components-and-lit
https://opensource.adobe.com/spectrum-web-components/

Vanilla Web Components

Let's build a vanilla Web Component

Using only HTML, CSS & JS, no library needed

A very basic web component
class HelloWorld extends HTMLElement {

 // This gets called when the HTML parser sees your tag

 constructor() {

 super(); // always call super() first in the ctor.

 this.msg = 'Hello World!';

 }

 // Called when your element is inserted in the DOM or

 // immediately after the constructor if it’s already in the DOM

 connectedCallback() {

 this.innerHTML = `<p>${this.msg}</p>`;

 }

}

customElements.define('hello-world', HelloWorld);

Custom Elements:

● Let you define your own HTML tag
with bundled JS behavior

● Trigger lifecycle callbacks

● Automatically “upgrade” your tag
when inserted in the document

Custom Elements donʼt:

● Scope CSS styles
○ Shadow DOM

● Scope JavaScript
○ ES2015

● “Reproject” children into <slot> elements
○ Shadow DOM

Adding ShadowDOM
class HelloWithShadowdom extends HTMLElement {

 // This gets called when the HTML parser sees your tag

 constructor() {

 super(); // always call super() first in the ctor.

 this.msg = 'Hello World from inside the ShadowDOM!';

 this.attachShadow({ mode: 'open' });

 }

 // Called when your element is inserted in the DOM or

 // immediately after the constructor if it’s already in the DOM

 connectedCallback() {

 this.shadowRoot.innerHTML = `<p>${this.msg}</p>`;

 }

}

customElements.define('hello-with-shadowdom', HelloWithShadowdom);

Using web components
<!DOCTYPE html>

<html>

<head>

 <title>Vanilla Web Components</title>

 <script src="./hello-world.js"></script>

 <script src="./hello-with-shadowdom.js"></script>

</head>

<body>

 <hello-world></hello-world>

 <hello-with-shadowdom></hello-with-shadowdom>

</body>

</html>

Using web components

Lifecycle callbacks
class MyElementLifecycle extends HTMLElement {
 constructor() {
 // Called when an instance of the element is created or upgraded
 super(); // always call super() first in the ctor.
 }
 static get observedAttributes() {
 // Tells the element which attributes to observer for changes
 return [];
 }
 connectedCallback() {
 // Called every time the element is inserted into the DOM
 }
 disconnectedCallback() {
 // Called every time the element is removed from the DOM.
 }
 attributeChangedCallback(attrName, oldVal, newVal) {
 // Called when an attribute was added, removed, or updated
 }
 adoptedCallback() {
 // Called if the element has been moved into a new document
 }
}

my-vanilla-counter element
class MyVanillaCounter extends HTMLElement {

 constructor() {

 super();

 this._counter = 0;

 this.attachShadow({ mode: 'open' });

 }

 connectedCallback() {

 this.render();

 this.display();

 }

 static get observedAttributes() { return ['counter'] }

 // We reflect attribute changes into property changes

 attributeChangedCallback(attr, oldVal, newVal) {

 if (oldVal !== newVal) {

 this[attr] = newVal;

 }

}

my-counter custom element
 // Getter and setters for counter

 get counter() { return this._counter; }

 set counter(value) {

 if (value != this._counter) {

 this._counter = Number.parseInt(value);

 this.setAttribute('counter', value);

 this.display();

 }

 }

 increment() {

 this.counter = this.counter + 1;

 this.dispatchEvent(new CustomEvent('increased',

 {detail: {counter: this.counter}}));

 }

my-counter custom element
 render() {

 let container = document.createElement('div');

 container.style.display = 'flex';

 ...

 this.style.fontSize = '5rem';

 }

 display() {

 this.output.innerHTML = `${this.counter}`;

 }

}

customElements.define(`my-vanilla-counter`, MyVanillaCounter);

my-counter-with-templates
let template = `
<style>
 ...
</style>
<div class="container">
 <div id="icon">

 </div>
 <div id="value">
 0
 </div>
</div>
`;

my-counter-with-templates
 render() {
 let templ = document.createElement('template');
 templ.innerHTML = template;

 this.shadowRoot.appendChild(templ.content.cloneNode(true));

 let button = this.shadowRoot.getElementById('icon');
 button.addEventListener('click', this.increment.bind(this));
 }

 display() {
 console.log(this.shadowRoot.getElementById('value'))
 this.shadowRoot.getElementById('value').innerHTML =
 `${this.counter}`;
 }

Coding my-counter

my-counter custom element

Why those libs?
Why people don't use vanilla?

Web component standard is low level

At it should be!

Standard == basic bricks

Standard exposes an API to:
○ Define elements
○ Encapsulate DOM

Libraries are helpers

They give you higher-level primitives

Different high-level primitives

Each one tailored to a use

Sharing the same base

High-performant, low-level, in-the-platform
web components standard

Libraries aren't a failure of standard

They happen by design

A library for building reusable,
scalable component libraries

Not another library

A Web Component toolchain

A build time tool

To generate standard web components

Fully featured

● Web Component-based

● Asynchronous rendering pipeline

● TypeScript support

● Reactive Data Binding

● Component pre-rendering

● Simple component lazy-loading

● JSX support

● Dependency-free components

And the cherry on the cake

Server-Side Rendering

Stencil leverages the web platform

Working with the web, not against it

The Stencil story
A company tired of putting good code in the bin

Once upon a time there was a fight

Between native apps and web app on mobile

A quest to the perfect solution

Hybrid apps, leveraging on web technologies

A company wanted to do it well

The perfect technology for mobile web and hybrid apps

The time is 2013

So what technology would you use?

Really soon after launch...

Hey folks, we are killing AngularJS!

What did Ionic people do?

Let's put everything in the trash bin and begin anew

But times have changed...

In 2013 Angular JS was the prom queen

Times have changed...

In 2017 Angular is only one more in the clique

Angular limits adoption of Ionic

Devs and companies are
very vocal about JS Frameworks

What did Ionic people do?

Let's put everything in the trash bin and begin anew…
But on which framework?

What about web components?

A nice solution for Ionic problems:
Any framework, even no framework at all!

But what Web Component library?

There were so many of them!

SkateJS

Let's do something different

A fully featured web component toolchain
With all the bells and whistles!

Ionic rewrote all their code again

From Ionic 4 is fully based on Stencil

Now Ionic works on any framework

Or without framework at all

And we have Stencil

To use it in any of our projects

Simply use npm init

Choose the type of project to start

Hands on Stencil

npm init stencil

? Select a starter project.

Starters marked as [community] are developed by the Stencil Community,

rather than Ionic. For more information on the Stencil Community, please see

https://github.com/stencil-community › - Use arrow-keys. Return to submit.

❯ component Collection of web components that can be used anywhere
 app [community] Minimal starter for building a Stencil app or website

 ionic-pwa [community] Ionic PWA starter with tabs layout and routes

And the project is initialized in some seconds!

Hands on Stencil

✔ Pick a starter › component
✔ Project name › my-stencil-counter
✔ All setup in 17 ms

 $ npm start
 Starts the development server.
 $ npm run build
 Builds your components/app in production mode.
 $ npm test
 Starts the test runner.

 We suggest that you begin by typing:
 $ cd my-stencil-counter
 $ npm install
 $ npm start

 Happy coding! 🎈

Let's look at the code

Some concepts

Decorators

import { Component, Prop, h } from '@stencil/core';
import { format } from '../../utils/utils';

@Component({
 tag: 'my-component',
 styleUrl: 'my-component.css',
 shadow: true
})
export class MyComponent {

 @Prop() first: string;

Some concepts

Properties and States

 @Prop() first: string;

 @Prop() middle: string;

 @Prop() last: string;

 @State() nickname: string;

Some concepts

Asynchronous rendering using JSX

 render() {
 return <div>Hello, World! I'm {this.getText()}</div>;
 }

Some concepts

Watch

 @Prop() value: number;

 @Watch(value)
 valueChanged(newValue: boolean, oldValue: boolean) {
 console.log(`The new value is ${newValue}, it was ${oldValue} before`);
 }

Some concepts

Emitting events

Listening to events

 @Event() actionCompleted: EventEmitter;

 someAction(message: String) {
 this.actionCompleted.emit(message);
 }

 @Listen('actionCompleted')
 actionCompletedHandler(event: CustomEvent) {
 console.log('Received the custom actionCompleted event: ', event.detail);
 }

Some concepts

Asynchronous public methods

 @Method()
 async sayHello() {
 this.hello = true;
 }

 render() {
 return (
 <Host>
 <h2>{ this.hello ? `Hello sthlm.js` : ''}</h2>
 </Host>
);
 }

Some concepts

Optional Shadow DOM

@Component({
 tag: 'my-component',
 styleUrl: 'my-component.css',
 shadow: true
})
export class MyComponent {

Coding my-stencil-counter

Simple. Fast. Web Components

Do you remember Polymer

The first Web Component library

It is deprecated...

And that means good news!

Let's try to see clearer

Let's dive into Polymer history...

A tool built for another paradigm

No web component support on browsers
No React, Angular or Vue innovations

No so well suited for the current one

The current platform is way more powerful
The state of art has evolved

Let's learn from its lessons

The current platform is way more powerful
The state of art has evolved

And let it rest...

There will have no Polymer 4...

So Polymer as we know it is dead...

But the Polymer Project is indeed alive!

But I have invested so much on it!

What to do?

That's why web components are top

You can keep using all your Polymer components and
create the new ones with a new library… And it simply works!

Born from the Polymer team

For the new web paradigm

Modern lightweight web components

For the new web paradigm

Based on lit-html

An efficient, expressive, extensible
HTML templating library for JavaScript

Do you know tagged templates?

Little known functionality of template literals

function uppercaseExpression(strings, ...expressionValues) {

 var finalString = ''

 for (let i = 0; i < strings.length; i++) {

 if (i > 0) {

 finalString += expressionValues[i - 1].toUpperCase()

 }

 finalString += strings[i]

 }

 return finalString

}

const expressions = ['Sophia Antipolis', 'RivieraDev', 'Thank you'];

console.log(uppercase`Je suis à ${expression[0]} pour ${expression[1].

$expression[2]!`

lit-html Templates

 Lazily rendered
Generates a TemplateResult

let myTemplate = (data) => html`
 <h1>${data.title}</h1>
 <p>${data.body}</p>
`;

It's a bit like JSX, isn't it?

The good sides of JSX… but in the standard!

LitElement

Lightweight web-components using lit-html

import { LitElement, html } from 'lit-element';

// Create your custom component
class CustomGreeting extends LitElement {
 // Declare properties
 static get properties() {
 return {
 name: { type: String }
 };
 }
 // Initialize properties
 constructor() {
 super();
 this.name = 'World';
 }
 // Define a template
 render() {
 return html`<p>Hello, ${this.name}!</p>`;
 }
}
// Register the element with the browser
customElements.define('custom-greeting', CustomGreeting);

Coding my-lit-counter

Web Components & Frameworks
Less “either/or” and more “both/and”

Compatibility is on Web Components
side

Web Components everywhere, baby!

They are the interoperable alternative

Any framework… or no framework at all

You can have a single implementation

And it simply works everywhere*

*React don't fully support them yet

Long story made short: use lit-labs/react

When you need interoperability

Nothing beats the standard

Angular can generate web components

Angular Elements

Vue can generate web components

With defineCustomElement()

React can generate web components

But it can generate them too

What about Svelte?

Let's look in detail one case

Web Components & Design Systems
One of the best cases for Web Components

So, what are Design Systems?
And why should I look at them?

A talk for devs by a dev

I am not a designer, neither I play one on TV...

The same or different?

A document listing the styles, patterns, practices,
and principles of a brand design standards

Style Guides

Style guides define the applicationʼs look and feel

Style Guides

Style Guide Example: Uber

https://brand.uber.com/

https://brand.uber.com/

Style Guide Example: Medium

 https://www.behance.net/gallery/7226653/Medium-Brand-Development

Style Guides alone are ambiguous

Interpretation needed to adapt
the preconisation to the use case

Component Catalogs

A component catalog is a repository of components,
with one or several implementations, code examples

and technical documentation

Component Catalog example: Bootstrap

https://getbootstrap.com/

Component Catalog Example: ING's Lion

https://lion-web-components.netlify.app/

Catalogs alone create inconsistency

Like using the same LEGO bricks
to create very different objects

A Design System is like a common visual
language for product teams

Design Systems

A Design System is a set of design standards,
documentations, and principles, alongside with the

toolkit (UI patterns and code components)
to achieve those standards

Design systems

Design systems

Example: Carbon Design System

https://www.carbondesignsystem.com/

Example: Firefox's Photon Design System

https://design.firefox.com/photon/

Example: Material Design

https://material.io/

The component catalog
The poor relative of the Design System family

Let's choose a simple example

Bootstrap based component catalogs

A long time ago

Components defined in HTML, CSS and some jQuery

Then it was AngularJS time...

And new reference implementations were needed

But you know the sad story...

All UI Bootstrap based catalogs woke up with
an obsolete implementation

Worry no more, let's do Angular!

ng-bootstrap to the rescue

But times had changed...

In 2017 Angular is only one more in the clique

 React is the new Big ThingTM

So let's build React Bootstrap...

Wait, what about Vue?

We also need BootstrapVue

OK, I think you see my point...

Most Design System do a choice

Either they choose a canonical implementation
or they ship and maintain several implementations

Both choices are problematic

Shipping only one implementation:
Web dev ecosystem changes quickly and

almost nobody keeps the same framework for years...

Both choices are problematic

Shipping several implementations:
You need to maintain all the implementation…

and you still miss some others

Incomplete catalogs are problematic

People will need to recode the components
in their chosen framework…

Coherence is not guaranteed!!!

Example: Carbon Design System

Web Components & Design Systems
A match made in heaven

Compatibility is on Web Components
side

Web Components everywhere, baby!

Do you remember AngularJS?

And all the code put in the trash bin
when Angular arrived...

The pain of switching frameworks?

Rewriting once again your code...

The impossibility of sharing UI code?

Between apps written with different frameworks

Web Components change that

In a clean and standard way

They are the interoperable alternative

Any framework… or no framework at all

They are truly everywhere 🚀

🚀 Even in the spaaaaaaaace 🚀

You can have a single implementation

And it simply works everywhere

When you need interoperability

Nothing beats the standard

But how to do it?
Designing, developing and managing

a catalog of Web Components

Learning from the best

https://lion-web-components.netlify.app/

Learning from the best

https://github.com/CleverCloud/clever-components

What kind of components?
From little atomic blocs to big smart components,

and everything in between

A matter of size and complexity

What kind(s) of components you want to build

Build from the bottom and go up

 Eat your own dog food

And how to choose the atoms?

Flexibility and configurability are key

And how to choose the atoms?

Encode often used patterns

And what about the molecules?

Capitalize on your atoms
Keep the flexibility and configurability

Big smart business components

Encoding your business logic

Internal or external customers?

Who are your target users?

Internal customers need off-the-shelf components

A well defined and coherent look-and-feel

External customers need to be able to tweak

Theming and customizing components

How to organize the catalog
Packages, imports and pragmatism

A single repository

Single source of truth for the catalog

Two schools of thought

A packet per component or a global one

Two schools of thought

Individual versioning vs global one

Driving-up adoption
Making devs use your components

Think who are your target users

Users of any framework current or future...

They aren't used to your library

And they shouldn't need to be

Go the extra mile to drive up adoption

So they don't need to do it

Make it easy to use

As easy as a HTML tag

Document every composant

How to use, inputs/outputs, examples...

Documentation isn't enough

Storybook make adoption easy

Keeping a coherent writing style

Write down your guidelines

I18n shouldn't be an afterthought

Prepare everything for internationalization

That's all, folks!
Thank you all!

