
Alexander Reelsen
@spinscale
alex@elastic.co

Full-text search with distributed
search engines

Agenda

• Overview

• Indexing: Analysis, Tokenization, Filtering, on disk data structures

• Searching: Scoring, Algorithms & Optimization

• Aggregations

• Distributed systems and search

• Q & A

Full text search introduction

Overview

Why is search so important?

SELECT * FROM products
 WHERE name LIKE = '%topf%'

grep "topf" my_dataset.txt

Problem

• Scales linearly with the data set size

• Relevancy

• Spell correction

• Synonyms

• Phrases

Inverted Index

The quick brown fox jumped over the
lazy dog

The
quick
brown
fox
jumped
over
the
lazy
dog

1
1
1
1
1
1
1
1
1

Tokenize

The
brown
dog
fox
jumped
lazy
over
quick
the

1
1
1
1
1
1
1
1
1

Sort

Quick brown foxes leap over lazy dogs
in summer

Quick
The
brown
dog
dogs
fox
foxes
in
jumped
lazy
leap
over
quick
summer
the

2
1
1,2
1
2
1
2
2
1
1,2
2
1,2
1
2
1

Quick
The
brown
dog
dogs
fox
foxes
in
jumped
lazy
leap
over
quick
summer
the

2
1
1,2
1
2
1
2
2
1
1,2
2
1,2
1
2
1

lazy dog

Quick
The
brown
dog
dogs
fox
foxes
in
jumped
lazy
leap
over
quick
summer
the

2
1
1,2
1
2
1
2
2
1
1,2
2
1,2
1
2
1

lazy AND dog

[1,2] AND [1] = [1]

Quick
The
brown
dog
dogs
fox
foxes
in
jumped
lazy
leap
over
quick
summer
the

2
1
1,2
1
2
1
2
2
1
1,2
2
1,2
1
2
1

lazy OR dog

[1,2] OR [1] = [1,2]

Technologies used today

• Apache Lucene (search library)

• Elasticsearch (distributed search engine built on
top of Apache Lucene)

Analysis, Tokenization, Filtering
Data structures

Indexing

Quick
The
brown
dog
dogs
fox
foxes
in
jumped
lazy
leap
over
quick
summer
the

2
1
1,2
1
2
1
2
2
1
1,2
2
1,2
1
2
1

quick

1 hit

Quick
The
brown
dog
dogs
fox
foxes
in
jumped
lazy
leap
over
quick
summer
the

2
1
1,2
1
2
1
2
2
1
1,2
2
1,2
1
2
1

quicK
0 hits

Analysis: Tokenizer & Token Filters

Tokenization

Tokenization

quick brown fox

Tokenization

quick_brown_fox

Tokenization

quick_brown_fox
the lazy, white dog.

Tokenization

quick_brown_fox
the_lazy_white_dog

Tokenization

quick_brown_fox
the_lazy_white_dog

https://unicode.org/reports/tr29/

https://unicode.org/reports/tr29/
https://unicode.org/reports/tr29/

Tokenization

quick_brown_fox
the_lazy_white_dog
https://www.jade-hs.de

http://jade-hs.de
http://jade-hs.de

Tokenization

quick_brown_fox
the_lazy_white_dog
https_www.jade_hs.de

Token Filter

Quick
The
brown
dog
dogs
fox
foxes
in
jumped
lazy
leap
over
quick
summer
the

2
1
1,2
1
2
1
2
2
1
1,2
2
1,2
1
2
1

Token filter

The
Quick
brown
fox

Token filter

The
Quick
brown
fox

the
quick
brown
fox

Lowercase

Token filter

The
Quick
brown
fox

the
quick
brown
fox

Lowercase

quick
brown
fox

Stopwords

Token filter

The
Quick
brown
fox

the
quick
brown
fox

Lowercase

quick
brown
fox

Stopwords

quick,fast
brown
fox

Synonyms

Token filter

The
Quick
brown
fox

the
quick
brown
fox

Lowercase

quick
brown
fox

Stopwords

quick,fast
brown
fox

Synonyms

Tokens can be changed, added, removed

Token filter

The
Quick
brown
fox

the
quick
brown
fox

Lowercase

quick
brown
fox

Stopwords

quick,fast
brown
fox

Synonyms

Queries need to be processed as well!

More analysis strategies

• Phonetic analysis: Meyer vs. Meier

• Stemming: foxes ⇾ fox

• Compounding: Blumentopf ⇾ blumen topf

• Folding: Spaß ⇾ Spass

(On-Disk) Data structures

What else is in an inverted index?

• Documents: Find documents

• Term frequencies: Relevancy

• Positions: Positional Queries

• Offsets: Highlighting

• Stored fields: The original data

Segment: Unit of work

• A fully self sufficient inverted index

• An index consists of a number of segments

• New segments are created for newly added
documents

• Segments are immutable!

Read-only data structures

• Pro: Write-once, sequentially

• Pro: Lock-free reading

• Pro: File system cache

• Contra: in-place updates & deletes

• Contra: Housekeeping

• Contra: Transactions

Segment: Deletes

• Mark a document as deleted in a special file

• Exclude it from searches

• No space is freed!

6 | 7 | 81 | 2 | 3 | 4 | 5
3

Segment: Merging

• Number of segments needs to be kept reasonable

• Merge multiple segments into one (smaller index)

• Delete expired documents

1 | 2 | 3 | 4 | 5 6 | 7 | 8
3

Segment: Merging

• Number of segments needs to be kept reasonable

• Merge multiple segments into one (smaller index)

• Delete expired documents

1 | 2 | 3 | 4 | 5 6 | 7 | 8 1 | 2 | 4 | 5 | 6 | 7 | 8
3

Precision vs. recall
Scoring
Algorithms and optimizations

Searching

Relevancy

Relevancy

• Textbook answer: How well matches a document a query?

• Business answer: Are the top search results those that
make me the most money?

• marketplace

• hotel booking website

• newspaper website

Scoring

Scoring: lazy dog

• Naive: increase a counter if a term is matched

• "the lazy dog" => score 2

• "the lazy frog" => score 1

• "the lazy lazy lazy lazy cat" => score 4 or 1?

Scoring: More than term frequency

• How about incorporating information about the
whole document corpus in scoring?

• Are lesser common terms more relevant?

• news paper: "dieselgate news"

Scoring: TF-IDF

• Term frequency: number of times a term occurs in
a field

• Inverse document frequency: inverse function of
the number of documents in which it occurs

Scoring: Vector space model

• Each term is a dimension

• The length is based on tf-idf calculation

• Similarity is the angle between vectors

• Cosine similarity: best match == angle 0°

Scoring: TF-IDF in Lucene

score(q,d) = ∑ (tf(t in d) · idf(t)2 · t.getBoost() · norm(t,d))

BM25

• Default in Apache Lucene/Elasticsearch

• Works better with stopwords (high TF)

• Term frequency saturation

• Improved field length normalization (per
document)

BM25

https://www.elastic.co/guide/en/elasticsearch/guide/2.x/pluggable-similarites.html

Precision vs. recall

Precision and Recall

Precision and Recall

relevant documents irerelevant documents

Precision and Recall

relevant documents irerelevant documents

True positives

relevant documents irerelevant documents

True negatives

relevant documents irerelevant documents

False positives

relevant documents irerelevant documents

False negatives

relevant documents irerelevant documents

Precision and recall

• Precision: How many selected documents are
relevant?

• Recall: How many relevant documents are
selected

Under the hood

Optimizations everywhere

• leap frogging, skip lists

• top-k

• two phase iterations

• integer compression

Query two phase iteration

Two phase iteration: Phrase query

• Phrase query: "quick fox"

• Approximation phase: document contains terms
quick and fox

• Verification phase: read positions of terms

Two phase iteration: Geo distance query

• Geo distance query: Distance from reference point

• Approximation phase: bbox around point

• Verification phase: exact distance calculation

Two phase iteration: Geo distance query

GET /my_locations/_search
{
 "query": {
 "bool" : {
 "filter" : {
 "geo_distance" : {
 "distance" : "200km",
 "pin.location" : {
 "lat" : 40,
 "lon" : -70
 }
 }
 }
 }
 }
}

Two phase iteration: several queries

• Powerful when several queries are used

• "quick fox" AND brown

• Approximation: quick AND fox AND brown

• Verification: "quick fox" position check for hits

Skip lists & leap frogging

• Term dictionary is a sorted skip list

• Skip list is a linked list with 'express lanes' to leap
forward

Skip lists

https://en.wikipedia.org/wiki/Skip_list

elasticsearch

Leap frogging

AND kibana logstashAND

Leap frogging

266
102
98
60
18
5
1

568
302
102
59
5
3

266
199
150
102

5

elasticsearch AND kibana logstashAND

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

Hit!

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

Hit!

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

Hit!

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

Hit!

266
102
98
60
18
5
1

568
302
102
59
5
3

elasticsearchANDkibanaAND

Leap frogging

266
199
150
102

5

logstash

Hit!

Hit!Done!

Top-k retrieval

Top-k retrieval

• elasticsearch OR kibana

• top 10 results wanted

• maximum score for kibana is 3.0

• maximum score for elasticsearch is 5.0

• collecting documents: when 10th hit has score > 3, then only
documents with elasticsearch need to be collected

• total hit count is not accurate

Top-k retrieval

Index sorting

Order index by field values

• each segment is sorted before write

• criteria can be chosen by the user

5 | 2 | 3 | 1 | 4 5 | 2 | 3 | 1 | 4

retrieve

5 | 4 | 3 | 2 | 1

sort

5 | 4

top 2

Order index by field values

• each segment is sorted before write

• criteria can be chosen by the user

5 | 4 | 3 | 2 | 1 5 | 4

early termination

Reducing data

Aggregations

Aggregations

documentsaggregations

documentsaggregations

Bucketing documents

Pumps

Sneakers

Oxfords

Sneakers

Boots

Bucketing documents
PumpsSneakers

OxfordsBoots

Bucketing documents
PumpsSneakers

OxfordsBoots

bucket agg

metric agg

doc_count
2

1

1

1

Bucketing documents
PumpsSneakers

OxfordsBoots

bucket agg

metric agg

avg price
50

90

95

23

Aggregations

• bucket: terms, histogram, geo, range, sampler ,
significant text, nested

• metric: value_count, avg, min, max, sum, stats, median
deviation, geo, percentile, cardinality,

• pipeline: min, max, sum, avg, derivative, stats, percentiles,
cumulative sum, moving average, moving function, serial
differencing

Fanning out a search, reducing the results

Distributed systems & search

Elasticsearch

Elasticsearch in 10 seconds

• Search Engine (FTS, Analytics, Geo), near real-time

• Distributed, scalable, highly available, resilient

• Interface: HTTP & JSON

• Centrepiece of the Elastic Stack

• Uneducated conservative guess: Tens of thousands of
clusters worldwide, hundreds of thousands of instances

Distributed systems

Distributed systems

• How do nodes communicate with each other?

• Who is taking and executing decisions?

• Failure detection?

• Replication strategy?

• Consistency?

• Enter consensus algorithms...

122

A fundamental problem in distributed
computing and multi-agent systems is to
achieve overall system reliability in the

presence of a number of faulty processes. This
often requires processes to agree on some

data value that is needed during computation

https://en.wikipedia.org/wiki/Consensus_(computer_science)

https://en.wikipedia.org/wiki/Consensus_(computer_science)
https://en.wikipedia.org/wiki/Consensus_(computer_science)

Consensus algorithms

• Leader based: Paxos, Raft

• Non leader based: BTC, gossip

Consensus in Elasticsearch

• Custom consensus algorithm, improving the
existing one

• Formally verified

• Optimized for Elasticsearch use-case (rolling
restarts, growing/shrinking clusters, log-of-
operations vs. cluster state)

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

Master node tasks

• Deciding where data should be stored

• Pinging other nodes

• Reacting on node leaves/joins

• Updating cluster state

• Distributing cluster state

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

cs1cs1cs1 cs1

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

cs1cs1cs1 cs1

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

cs2cs1cs1 cs1

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

cs2cs1cs1 cs1

Consensus in Elasticsearch

node 1 node 2 node 3 node 4

cs2cs2cs1 cs2

Distributed search

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

p0

Primary Shard (Lucene Index)

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

r0p0

Replica shard (copy)

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

p1r0p0 r1

2nd Primary Shard Replica shard (copy)

Distributed search in Elasticsearch

• Shard: Lucene index, unit of scale

• Primary shard: Write scalability

• Replica shard: Read scalability, availability

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

p1r0p0 r1

1. Client connects any node with search request

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

p1r0p0 r1

1. Client connects any node with search request

2. Execute query against shards

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

p1r0p0 r1

1. Client connects any node with search request

3. top-k search results are returned to coordinating node

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

p1r0p0 r1

1. Client connects any node with search request

4. Create real top-k result list

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

p1r0p0 r1

1. Client connects any node with search request

5. Fetch original documents

Distributed search in Elasticsearch

node 1 node 2 node 3 node 4

p1r0p0 r1

6. Return data to the client

5. Fetch original documents

Aggregations

Aggregations - cardinality

node 1 node 2

p1p0

POST /sales/_search?size=0
{
 "aggs" : {
 "type_count" : {
 "cardinality" : {
 "field" : "type"
 }
 }
 }
}

Aggregations - cardinality

node 1 node 2

p1p0

25 40

How many distinct elements
are in my index?

What is the total? 40? 65?

Naive solution: merge data to single
dataset and count. Doesn't scale!

Solution: Use HyperLogLog++

HyperLogLog++

• Hash based counting

• Trades in memory for accuracy

• Fixed memory usage, based on configurable
precision

• Result: Small mergeable data structure, can easily
be sent over the network

Aggregations - percentile

node 1 node 2

p1p0

GET latency/_search
{
 "size": 0,
 "aggs" : {
 "load_time_outlier" : {
 "percentiles" : {
 "field" : "load_time"
 }
 }
 }
}

T-Digest

• Extreme percentiles are more accurate than the Median

• Percentiles are divided into buckets

• When buckets grow over a boundary, approximation
kicks in, saving memory in the process

• The exact level of inaccuracy is difficult to generalize

• Alternative: HDR histograms

Probabilistic data structures

• bloom/cuckoo/quotient filters (membership check)

• HyperLogLog++ (cardinality)

• T-Digest, DDSketch, HDR histogram (percentile)

• Count-Min sketch (frequency, top-k)

• Hashing (similarity)

https://github.com/addthis/stream-lib
https://github.com/addthis/stream-lib

Try it out yourself!

https://ela.st/jade-hochschule-samples

Demo

https://ela.st/hack-your-future-2020

Elastic Cloud
Free 30 day trial

https://ela.st/hack-your-future-2020
https://ela.st/hack-your-future-2020

... or why you should take a closer look at search

Upcoming trends & summary

Search is not just google...

• "Just google it" does not cut it

• Enterprise search: Intranet/G-Drive/Dropbox

• Ecommerce search

• SIEM

• Observability: Logging, APM & Metrics

Search is not 'done'

• Constant improvement

• Data structures & algorithms (BKD tree for geo
shapes)

• Academic research moves to industry thanks to
Apache Lucene

Search is still tough

• Language specific analysis

• Smart query parsing (nike red hoodie xl)

• Geo based search

• Anomaly detection

• Incoporating feedback loops

Upcoming trends

• Learning-to-Rank

• Deep Learning

• Feedback loop

Summary

• Everything is a search problem!

• Search is hard... and interesting

• Distributed systems are hard... and interesting

• Domain knowledge required

• Data keeps exploding, good job chances!

Books, books, books

Literature

Links, links, links

Resources

Links

https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/similarities/
TFIDFSimilarity.html

https://www.elastic.co/blog/whats-new-in-lucene-8

https://www.elastic.co/blog/faster-retrieval-of-top-hits-in-elasticsearch-with-block-max-wand

https://speakerdeck.com/elastic/amusing-algorithms-and-data-structures

https://www.elastic.co/blog/index-sorting-elasticsearch-6-0

https://raft.github.io/

https://github.com/elastic/elasticsearch-formal-models

https://gist.github.com/spinscale/b62c8b357fae7db3f14b7d3127758951

https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://www.elastic.co/blog/whats-new-in-lucene-8
https://www.elastic.co/blog/faster-retrieval-of-top-hits-in-elasticsearch-with-block-max-wand
https://speakerdeck.com/elastic/amusing-algorithms-and-data-structures
https://www.elastic.co/blog/index-sorting-elasticsearch-6-0
https://raft.github.io/
https://github.com/elastic/elasticsearch-formal-models
https://gist.github.com/spinscale/b62c8b357fae7db3f14b7d3127758951
https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://www.elastic.co/blog/whats-new-in-lucene-8
https://www.elastic.co/blog/faster-retrieval-of-top-hits-in-elasticsearch-with-block-max-wand
https://speakerdeck.com/elastic/amusing-algorithms-and-data-structures
https://www.elastic.co/blog/index-sorting-elasticsearch-6-0
https://raft.github.io/
https://github.com/elastic/elasticsearch-formal-models
https://gist.github.com/spinscale/b62c8b357fae7db3f14b7d3127758951

Links - probabilistic data structures

https://github.com/addthis/stream-lib

https://github.com/DataDog/sketches-java

https://github.com/HdrHistogram/HdrHistogram

https://github.com/JohnStarich/java-skip-list

https://github.com/addthis/stream-lib

https://static.googleusercontent.com/media/research.google.com/fr/
pubs/archive/40671.pdf

https://github.com/addthis/stream-lib
https://github.com/DataDog/sketches-java
https://github.com/HdrHistogram/HdrHistogram
https://github.com/JohnStarich/java-skip-list
https://github.com/addthis/stream-lib
https://static.googleusercontent.com/media/research.google.com/fr/pubs/archive/40671.pdf
https://static.googleusercontent.com/media/research.google.com/fr/pubs/archive/40671.pdf
https://github.com/addthis/stream-lib
https://github.com/DataDog/sketches-java
https://github.com/HdrHistogram/HdrHistogram
https://github.com/JohnStarich/java-skip-list
https://github.com/addthis/stream-lib
https://static.googleusercontent.com/media/research.google.com/fr/pubs/archive/40671.pdf
https://static.googleusercontent.com/media/research.google.com/fr/pubs/archive/40671.pdf

Alexander Reelsen
alex@elastic.co
@spinscale

Q & A

mailto:alex@elastic.co
mailto:alex@elastic.co

