WITCHCRAFT

FP Is a set of principles and practice, rather than one monolithic thing.
We should embrace different ways of achieving these aims.

Different results of FP principles

* Elixir * Haskell
* Can feel (somewhat) imperative * |_argely declarative
* |ots of operational logic * Often think in abstractions
(vertical)

* [hinks primarily in directional
data “flow” (horizontal)

Different results of P principles

* Crossover
* Haskell has pipes

* Elixir has Enum

* | still want to try getting more “Haskell in Elixir” _(*/)_/

Adding a Vertical Dimension to Elixir

WITCHCRAFT

Witchcratt

1.Witchcraft (also called witchery or spellcraft) broadly means the
practice of, and belief in, magical skills and abilities that are able to
be exercised individually, by designated social groups, or by persons
with the necessary esoteric secret knowledge

2. A category-inspired library for Elixir

Witchcratt

* Monoid, Functor(s), Monad, Arrow, and Category for Elixir
* Follows the Haskell Prelude and Control modules pretty closely

* A |lot of these rely on combinators and currying

VWant partial application in Elixir

* EliXir Is an arity-based language
* (Automatic) partial application isn’t a thing
* Currying isn’t a thing
* foo(a) is a different function from foo(a, b)

* Bootstrap time!

* Massive detour...

MASSIVE DETOUR

Quark

* Combinators for Elixir (id, flip, const, fix, SKI, &c)
* How does Elixir now have these in the standard lib?!

* Currying and (completely faked) partial application

Runtime Currying in Elixir

@spec curry((... -> any)) :: (any -> any)
def curry(fun) do
{ , arity} = :erlang.fun_info(fun, :arity)
curry(fun, arity, [])
end

@spec curry((... -> any), integer, [any]) :: (any -> any)
defp curry(fun, ©, arguments), do: apply(fun, Enum.reverse(arguments))
defp curry(fun, arity, arguments) do
import Quark.Sequence, only: [pred: 1]
fn arg -> curry(fun, pred(arity), [arg | arguments]) end
end

Runtime Currying in Elixir

Regular
div(1e, 2)
=>5

Curried
div.(10).(5)
=> 2

Partially applied
div_ten = div.(10)
div_ten.(2)

=> 5

Compile-Time Currying in Elixir

defmacro defcurryp(head, do: body) do
{fun_name, ctx, args} = head

quote do
defp unquote({fun_name, ctx, []}), do: unquote(wrap(args, body))
end
end

defp wrap([arg|args], body) do
quote do
fn unquote(arg) ->
unquote(wrap(args, body))
end
end
end

defp wrap(_, body), do: body

agefpartial

* Destroys the Elixir arity system

* Still really nice to use internally
* WIll get folded back in to defcurry eventually

* Need to be able to specify only and except

BACKTO

Back to Witchcratt

* Functors, monads, arrows, categories for Elixir
* Follows the Haskell Prelude and Control modules pretty closely

* A lot of these rely on combinators and currying

defimpl Witchcraft.Functor, for: List do
“m ~SNI "

"TTelixir

iex> 1ift([1,2,3], &(&1 + 1))

[2,3,4]

- N

def lift(data, func), do: Enum.map(data, func)
end

““ ~SN'N
Alias for "1lift" and "<~ , but with data flowing to the right.

"7 Telixir

iex> [1,2,3] ~> &(&1 * 10)
[10, 20, 30]

- N

@spec any ~> (any -> any) :: any
def args ~> func, do: func <~ args

ﬁm ~S"l”
Alias for "1lift" and "<~ , but with data flowing to the right.

"7 Telixir

iex> [1,2,3] ~> &(&1 * 10)
[18, 20, 30]

@spec any ~> (any -> any) :: any
def args ~> func, do: func <~ args

The Operators are Backwards”!

* Philosophical difference in Elixir

* Thinking horizontally (in “flow”) == data is the primary “subject”

VWitchcraft so far

<|>

apply Applicative
lift

AD s

* \Want ADTs to get the most out of Witchcraft

* Elixir doesn’t have ADTs...

BUT ELIXIR HAS STRUCTS

Bootstrapped
algebraic data types
for Elixir

defimpl Witchcraft.Applicative, for: Witchcraft.Id do
import Quark.Curry, only: [curry: 1]
alias Witchcraft.Id, as: Id

““ ~S"."

woc WALl
T Telixir “relixir

iex> XWitchcraft.Id{} [> wrap(9) iex> import Kernel, except: [apply: 2]
#Witchcraft.Id{id: 9} iex> apply(¥Witchcraft.Id{id: 42}, ¥Witchcraft.Id{id: &(&1 + 1)})

) ZWitchcraft.Id{id: 43}
iex> import Kernel, except: [apply: 2]
iex> import Witchcraft.Functor, only: [lift: 2]

def wrap(_, bare), do: X¥Witchcraft.Id{id: bare} iex> alias Witchcraft.Id, as: Id

| S P iex> apply(¥Id{id: 9}, lift(%¥Id{id: 2}, &(fn x -> x + &1 end)))
ZWitchcraft.Id{id: 11}

- N

def apply(#Id{id: value}, ¥Id{id: fun}), do: %Id{id: curry(fun).(value)}

* |nternals are the topic of another talk

Fin

