
WITCHCRAFT
EXPERIMENTS WRITING HIGHER-ORDER ABSTRACTIONS IN ELIXIR
OR: PUTTING THE “FUN” BACK IN “FUNCTOR”

FP is a set of principles and practice, rather than one monolithic thing.
We should embrace different ways of achieving these aims.

Different results of FP principles
Elixir

Can feel (somewhat) imperative

Lots of operational logic

Thinks primarily in directional
data “flow” (horizontal)

Haskell

Largely declarative

Often think in abstractions
(vertical)

Different results of FP principles
Crossover

Haskell has pipes

Elixir has Enum

I still want to try getting more “Haskell in Elixir” ¯_()_/¯

Adding a Vertical Dimension to Elixir

WITCHCRAFT

Witchcraft

1.Witchcraft (also called witchery or spellcraft) broadly means the
practice of, and belief in, magical skills and abilities that are able to
be exercised individually, by designated social groups, or by persons
with the necessary esoteric secret knowledge

2. A category-inspired library for Elixir

Witchcraft
Monoid, Functor(s), Monad, Arrow, and Category for Elixir

Follows the Haskell Prelude and Control modules pretty closely

A lot of these rely on combinators and currying

Want partial application in Elixir
Elixir is an arity-based language

(Automatic) partial application isn’t a thing 😱

Currying isn’t a thing

foo(a) is a different function from foo(a, b)

Bootstrap time!

Massive detour…

MASSIVE DETOUR

Quark

Combinators for Elixir (id, flip, const, fix, SKI, &c)

How does Elixir now have these in the standard lib?!

Currying and (completely faked) partial application

Runtime Currying in Elixir

Runtime Currying in Elixir

Compile-Time Currying in Elixir

defpartial

Destroys the Elixir arity system 😅

Still really nice to use internally

Will get folded back in to defcurry eventually

Need to be able to specify only and except

BACK TO

Back to Witchcraft

Functors, monads, arrows, categories for Elixir

Follows the Haskell Prelude and Control modules pretty closely

A lot of these rely on combinators and currying

Just Protocols & Functions

Operators

Operators are Backwards?!

The Operators are Backwards?!

Philosophical difference in Elixir

Thinking horizontally (in “flow”) == data is the primary “subject”

Witchcraft so far

Functor

Monoid

Applicative

Monad

lift
wrapapply

bind join

liftA2 liftM2 identityappend

<~ <<~

<<<

<|>

ADTs

Want ADTs to get the most out of Witchcraft

Elixir doesn’t have ADTs…

BUT ELIXIR HAS STRUCTS

Algae

Internals are the topic of another talk

Q&A

Fin

