
SQL, NoSQL and
Beyond

Lorna Jane Mitchell, IBM

Slides: https://lornajane.net/resources

https://lornajane.net/resources
Without data, your code is nothing. Focus more on it

I'd like to show you a few things

Beyond MySQL
MySQL is great!
If you're ready for something different, how about:
• PostgreSQL
• Redis
• CouchDB

@lornajane

No MySQL bashing! A pick-and-mix of other open source DB tech

Postgres: open source relational DB. Powerful and friendly

Redis: in-memory key value store, you all need this in your stack

CouchDB: document database for the modern web

PostgreSQL

@lornajane

Relational database for data that relates to one another.

Orders, costs and order items. Monthly sales reports.

About PostgreSQL
Homepage: https://www.postgresql.org/
• Open source project
• Powerful, relational database

@lornajane

https://www.postgresql.org/
Use instead of MySQL (they're close friends), performs really well

PostgreSQL works GREAT with PHP, use PDO. Most frameworks support

Some features due to arrive in MySQL 8 too

... As a MySQL user, I had preconceptions

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL

@lornajane

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL
Not true. They are both approachable from both CLI and other
web/GUI tools, PostgreSQL has the best CLI help I've ever seen.

@lornajane

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL
Not true. They are both approachable from both CLI and other
web/GUI tools, PostgreSQL has the best CLI help I've ever seen.
Myth 2: PostgreSQL is more strict than MySQL

@lornajane

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL
Not true. They are both approachable from both CLI and other
web/GUI tools, PostgreSQL has the best CLI help I've ever seen.
Myth 2: PostgreSQL is more strict than MySQL
True! But standards-compliant is a feature IMO

@lornajane

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL
Not true. They are both approachable from both CLI and other
web/GUI tools, PostgreSQL has the best CLI help I've ever seen.
Myth 2: PostgreSQL is more strict than MySQL
True! But standards-compliant is a feature IMO
Myth 3: PostgreSQL is slower than MySQL for simple things

@lornajane

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL
Not true. They are both approachable from both CLI and other
web/GUI tools, PostgreSQL has the best CLI help I've ever seen.
Myth 2: PostgreSQL is more strict than MySQL
True! But standards-compliant is a feature IMO
Myth 3: PostgreSQL is slower than MySQL for simple things
Not true. PostgreSQL has better query planning so is likely to be
faster at everything, and also has more features.

@lornajane

PostgreSQL Performance

@lornajane

Time taken to do a few different things, small is good

Postgres is green. Maria DB light blue, MySQL dark blue

Slightly outdated, still valid, feel free to update!

Data Types
PostgreSQL has data types to suit more data needs:
• UUID data type to create unique identifiers
• JSON and JSONB for working with JSON data

@lornajane

UUID: Universally Unique Identifier - avoid guessable ints

JSON to allow some document-database-like features

JSON can search/index on nested columns, perf much better than you'd think

IP address type, better date/time e.g. interval type

Data Types: UUID
We can use a UUID as a primary key:
CREATE TABLE products (
 product_id uuid primary key default uuid_generate_v4(),
 display_name varchar(255)
);

INSERT INTO products (display_name)
 VALUES ('Jumper') RETURNING product_id;

 product_id | display_name
-------------------------------------+--------------
73089ae3-c0a9-4c0a-8287-e0f6ec41a200 | Jumper

@lornajane

(you may need to ``create extension uuid-ossp`` first)

Default value is a function. Functions supported lots of places in Postgres

... RETURNING keyword

RETURNING Keyword
Look at that insert statement again
INSERT INTO products (display_name)
 VALUES ('Jumper') RETURNING product_id;

The RETURNING keyword allows us to retrieve a field in one step
- removes the need for a last_insert_id() call.

@lornajane

Useful for calculated/generated values, not just IDs

Can be a list of values (comma-separated)

 more data types: JSON

Data Types: JSONB
Add a column to the table to hold attributes
ALTER TABLE products ADD COLUMN attrs jsonb;

Add some data
INSERT INTO products (display_name, attrs) VALUES
('Dress', '{"length": {"value": 61, "units":"inch"},
 "pockets":true, "colour":"teal"}');

@lornajane

Short column names to fit on slides

Sample data from my fantasy world

...Can select on these nested fields

Data Types: JSONB
We can use the JSON in our WHERE clause
SELECT display_name AS product, attrs->>'colour' AS colour
 FROM products
 WHERE attrs->>'pockets' = 'true';

 product | colour
---------+--------
 Cardi | red
 Dress | teal
 Jeans | indigo
(3 rows)

@lornajane

See the double arrow for a field within a field? Select list and Where clause

...Let's talk about indexes next

Indexes
Examples might be:
• Primary key ensuring uniqueness
• Some other unique key
• Indexes facilitating fast lookup on one or more columns
• Indexes that use expressions

@lornajane

Indexes are a key skill. Improve performance, but only add as needed

Fast lookup: covering index. All data in index, no need to hit table

Indexes: Primary key
Primary keys are always unique
CREATE TABLE employees (
 id serial primary key,
 name text
);

The serial data type is numeric and incrementing

@lornajane

Serial is like autoincrement, but it's a datatype

... let's make this more interesting with another index

Indexes: Expressions
Use an expression if you'll use one when fetching data
CREATE TABLE employees (
 id serial primary key,
 name text
);

CREATE INDEX name_idx
 ON employees (lower(name));

@lornajane

Index stores ready-converted values to compare against

This is because postgres supports functions

Common Table Expressions (CTE)
Feature enables declaring extra statements to use later
Moves complexity out of subqueries, making more readable and
reusable elements to the query

Syntax:
WITH meaningfulname AS
 (subquery goes here joining whatever)
SELECT FROM meaningfulname ...

@lornajane

CTEs are coming in MySQL. They are the thing I miss most

syntactic sugar but make queries way more readable, moving subqueries to a safe place

... This is a template. Let's see a data structure, then a CTE

Common Table Expressions (CTE)

@lornajane

Products have costs, different by country and also currencies

Common Table Expressions (CTE)
WITH costs AS
 (SELECT pc.product_id, pc.amount, cu.code, co.name
 FROM product_costs pc JOIN currencies cu USING (currency_id)
 JOIN countries co USING (country_id))
SELECT display_name, amount, code currency, name country
 FROM products JOIN costs USING (product_id);

display_name | amount | currency | count
-------------+--------+----------+---------
T-Shirt | 25 | GBP | UK
T-Shirt | 30 | EUR | Italy
T-Shirt | 29 | EUR | France

@lornajane

The actual query is the last two lines here

``costs`` CTE encloses fussy bit, like temp view. We use it safely

Window Functions
Window functions allow us to calculate aggregate values while
still returning the individual rows.
e.g. a list of orders, including how many of this product were
ordered in total

@lornajane

In MySQL, the aggregate function runs per row returned

Here, I can show every row, but with totals per product

How about sales per month, with quarter AND year subtotals in one query?

... some syntax

Window Functions
SELECT o.order_id, p.display_name,
 count(*) OVER (PARTITION BY product_id) AS prod_orders
FROM orders o JOIN products p USING (product_id);

 order_id | display_name | prod_orders
----------------------------------+--------------+-------------
 74806f66-a753-4e99-aeae-6f947f08 | T-Shirt | 6
 9ae83b3f-931e-4e6a-a8e3-910dd9ab | Hat | 3
 0030c58a-122c-4fa5-90f4-231d3848 | Hat | 3
 3d5a0d76-4c7e-433d-b3cf-2473912d | Hat | 3

@lornajane

Contrived example! Orders have product ID in same row. Simple, fits slide

Syntax: Count OVER (PARTITION by thing)

incomplete results shown, Hat should give you the idea

PostgreSQL Tips and Resources
• PhpMyAdmin equivalent: https://www.pgadmin.org/
• Best in-shell help I've ever seen (type \h [something])
• JSON features
• Indexes on expression
• Choose where nulls go by adding NULLS FIRST|LAST to your
ORDER BY

• Fabulous support for geographic data http://postgis.net/
• Get a hosted version from https://www.ibm.com/cloud/

@lornajane

https://www.pgadmin.org/
http://postgis.net/
https://www.ibm.com/cloud/
Hard to make the argument for MySQL IMO

Plugins for Geo but also time series, loads of stuff

.... BREATHE. That was Postgres, familiarish? Redis next

Redis

@lornajane

Not a replacement, an addition. Do this on Monday

About Redis
Homepage: http://redis.io/
Stands for: REmote DIctionary Service
An open source, in-memory datastore for key/value storage,
and much more

@lornajane

http://redis.io/
It's in memory. Blistering fast, only as big as the RAM. THINK

Uses of Redis
Usually used in addition to a primary data store for:
• caching
• session data
• simple queues

Anywhere you would use Memcache, use Redis

@lornajane

Cache data (esp. expensive data), also snippets/HTML

PHP Sessions! For cloud (no filesystem) or multiple webheads

Use lists for queues

Redis Feature Overview
• stores strings, numbers, hashes, sets ...
• supports key expiry/lifetime
• very simple protocols, use redis-cli
• great monitoring tools

@lornajane

string: This is your basic key/value pair.

hashes: The value of this type is itself pairs of keys and values; it's useful for storing objects.

lists: Allows multiple values in a particular order; performs very well if you only add or remove items from either end of the list (called 'head' and 'tail').

sets: Allows multiple unique values in any order. You can add, remove, and check for any value in the set without performance penalties but cannot add duplicate values.

sorted sets: Sets where each value also has a 'score'. The data is stored sorted by the score, making it very quick to retrieve data using these values.

... examples all use redis-cli. PHP libs name functions as commands

Storing Key/Value Pairs
Store, expire and fetch values.
> set risky_feature on
OK
> expire risky_feature 3
(integer) 1
> get risky_feature
"on"
> get risky_feature
(nil)

Shorthand for set and expire: setex risky_feature 3 on

@lornajane

Set. Expire (then really quickly GET, wait, GET again)

Storing Hashes
Use a hash for related data (h is for hash, m is for multi)
> hmset featured:hat name Sunhat colour white
OK
> hkeys featured:hat
1) "name"
2) "colour"
> hvals featured:hat
1) "Sunhat"
2) "white"

@lornajane

Commands prefixed with data type. H for Hash, M for multiple

Z for set you get the idea :)

hkey and hvals to get that hash info back

colon is convention only, namespace separator

Finding Keys in Redis
The SCAN keyword can help us find things
127.0.0.1:6379> hset person:lorna twitter lornajane
(integer) 1
127.0.0.1:6379> scan 0 match person:*
1) "0"
2) 1) "person:Lorna"
2) "person:lorna"
127.0.0.1:6379> hscan person:lorna 0
1) "0"
2) 1) "twitter"
2) "lornajane"

@lornajane

Find keys matching a pattern, and scan within hashes

Beware KEYS, shows all, not recommended for prod

Queues using Redis Lists
> LPUSH todo breakfast
(integer) 1
> LPUSH todo newspaper
(integer) 2

> BRPOP todo 1
1) "todo"
2) "breakfast"
> BRPOP todo 1
1) "todo"
2) "newspaper"

@lornajane

L for List or Left. R for Right. B for blocking (waits for data)

Configurable Durability
This is a tradeoff between risk of data loss, and speed.
• by default, redis snapshots (writes to disk) periodically
• the snapshot frequency is configurable by time and by

number of writes
• use the appendonly log to make redis eventually durable

@lornajane

Redis is an aux data store. Expect and handle cache misses

Does flush to disk. Not when you needed it to!

Can configure to perform like just writing to a file ...

Redis: Tips and Resources
• Replication and clustering are simple!
• Sorted sets
• Supports pub/sub:

• SUBSCRIBE comments then PUBLISH comments message
• Excellent documentation http://redis.io/documentation
• Reference card https://dzone.com/refcardz
• For PHP, predis/predis from composer or phpiredis
• Get a hosted version from https://www.ibm.com/cloud/

@lornajane

http://redis.io/documentation
https://dzone.com/refcardz
https://www.ibm.com/cloud/
Dzone Refcard is mine

sorted sets for most commented/voted/viewed leaderboards

PubSub is a feature but one line, doesn't need own slide

Try predis (userland) with ``phpiredis`` ext for speed if needed

.... BREATHE. That was Redis, CouchDB next

CouchDB

@lornajane

Could be main DB, lots of apps use a document DB

Often datastore for a specific component

About CouchDB
Homepage: http://couchdb.apache.org/
A database built from familiar components
• HTTP interface
• Web interface Fauxton
• JS map/reduce views

CouchDB is a NoSQL Document Database

@lornajane

http://couchdb.apache.org/
Fauxton because Futon because CouchDB because geeks naming things

can curl DB! Don't need proprietary drivers/protocols. PHP: Guzzle

Schemaless Database Design
We can store data of any shape and size

@lornajane

Every row is a doc, and can differ. Sounds like crazy chaos

Spoiler: they're similar, handled by same code

Brilliant for spare attrs, products/CMS use cases

Documents and Versions
When I create a record, I supply an id and it gets a rev:
$ curl -X PUT http://localhost:5984/products/1234
 -d '{"type": "t-shirt", "dept": "womens", "size": "L"}'

{"ok":true,"id":"1234","rev":"1-bce9d948a37e72729e689145286fd3ee"}

(alternatively, POST and CouchDB will generate the id)

@lornajane

I chose the ID here, it's RESTful (generated ID doesn't fit slide)

Use your favourite HTTP client. Postman? See my blog post

Update Document
CouchDB has awesome consistency management
To update a document, supply the rev:
$ curl -X PUT http://localhost:5984/products/1234
 -d '{"_rev": "1-bce9d948a37e72729e689145286fd3ee",
 "type": "t-shirt", "dept": "womens", "size": "XL"}'

{"ok":true,"id":"1234","rev":"2-4b8a7e1bde15d4003aca1517e96d6cfa"}

@lornajane

No atomic update, so say which version you think you're updating!

If you are out of date, 409 Conflict response is sent

Changes API
Get a full list of newest changes since you last asked
http://localhost:5984/products/_changes?since=7
~ $ curl http://localhost:5984/products/_changes?since=7
{"results":[
{"seq":9,"id":"123",
 "changes":[{"rev":"2-7d1f78e72d38d6698a917f8834bfb5f8"}]}
],

Polling/Long polling or continuous change updates are
available, and they can be filtered.

@lornajane

http://localhost:5984/products/_changes?since=7
Think about getting events on DB change. Such a feature

Something similar in MongoDB 3.6 if you use that

Replication
CouchDB has the best database replication options imaginable:
• ad-hoc or continuous
• one directional or bi directional
• conflicts handled safely (best fault tolerance ever)

@lornajane

Document DBs are all distributed, your data probably exists in multiple places

This is also how I backup/move databases

Databases can be disconnected, changes on both sides, and sync happily later

Conflicting updates: one record wins, the other is available to inspect, offer to user

CouchDB Views
• Written in Javascript
• Use MapReduce
• The map results are stored
• Can be used either for filtering, or for aggregation

@lornajane

Views for larger datasets, fab performance, know what question you'll ask

Also Mango. Supposedly like Mongo, but not really. Also: geeks and naming things

... quick Map Reduce primer in case you're interested

MapReduce Primer: Map
• Examine each document, "emit" 0+ keys/value pairs
• Scales well because each document is independent
• To filter a collection of documents, use map step only

@lornajane

Each doc independent. Examine, emit (lots or not), next.

Scales horizontally across compute

.... maybe pictures would help

MapReduce Primer: Map

@lornajane

This is the JSON, read it before I shrink it! Simple struct

MapReduce Primer: Map

@lornajane

Emit key, don't include doc (view knows which doc this emit is from)

MapReduce Primer: Map

@lornajane

Only emit if data matches, otherwise we don't want this doc in our view (filter)

MapReduce Primer: Map

@lornajane

Emit as many times as appropriate. We can count things in each dept they belong to

MapReduce Primer: Reduce

@lornajane

There's a silent sorting step, group same keys together into buckets, then aggregate

MapReduce Primer: Reduce
• "Reduce" values in batches with the same key
• CouchDB has useful built in functions for most things
• Use reduce step when you want aggregate data

• (SQL equivalent: a query with GROUP BY)

@lornajane

Can write own JS reduce, but COUNT, SUM, STATS really cover it

CouchDB Views: Example
http://localhost:5984/products/_design/products/_view/coun
t?group=true
{"rows":[
 {"key":["mens","t-shirt"],"value":1},
 {"key":["womens","bag"],"value":3},
 {"key":["womens","shoes"],"value":1},
 {"key":["womens","t-shirt"],"value":2}
]}

@lornajane

http://localhost:5984/products/_design/products/_view/count?group=true
http://localhost:5984/products/_design/products/_view/count?group=true
Emit dept and type as array keys, get subtotals across all with group=true

CouchDB Views: Example
http://localhost:5984/products/_design/products/_view/coun
t?group_level=1
{"rows":[
 {"key":["mens"],"value":1},
 {"key":["womens"],"value":6}
]}

@lornajane

http://localhost:5984/products/_design/products/_view/count?group_level=1
http://localhost:5984/products/_design/products/_view/count?group_level=1
Or just first key (works from left to right)

Consider year/month/day/hour/minute/second keys for time series data

CouchDB Tips and Resources
• CouchDB Definitive Guide http://guide.couchdb.org
• Javascript implementation https://pouchdb.com/
• PHP CouchDB library:

https://github.com/ibm-watson-data-lab/php-couchdb
• Get a hosted version from https://www.ibm.com/cloud/

@lornajane

http://guide.couchdb.org
https://pouchdb.com/
https://github.com/ibm-watson-data-lab/php-couchdb
https://www.ibm.com/cloud/
CouchDB library. Mine, in progress, some PRs so please try it and help!

I love Apache CouchDB, work with contributors

It's called Cloudant on IBM Cloud

SQL, NoSQL and Beyond

@lornajane

Other databases exist, they are awesome, and they could be a great fit

Relational SQL Server, Oracle. Document: MongoDB, ElasticSearch

If you go back and do nothing, that's OK too :) Be curious

Thanks
Feedback: https://joind.in/talk/f4061
Slides: http://lornajane.net/resources
Further reading: Seven Databases in Seven Weeks

Contact:
• lorna.mitchell@uk.ibm.com
• @lornajane

@lornajane

https://joind.in/talk/f4061
http://lornajane.net/resources
Feedback please! Otherwise others have to listen to this nonsense. And other speakers

Thanks for listening! Please get in touch, chat, whatever

	Beyond MySQL
	PostgreSQL
	About PostgreSQL
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Performance
	Data Types
	Data Types: UUID
	RETURNING Keyword
	Data Types: JSONB
	Data Types: JSONB
	Indexes
	Indexes: Primary key
	Indexes: Expressions
	Common Table Expressions (CTE)
	Common Table Expressions (CTE)
	Common Table Expressions (CTE)
	Window Functions
	Window Functions
	PostgreSQL Tips and Resources
	Redis
	About Redis
	Uses of Redis
	Redis Feature Overview
	Storing Key/Value Pairs
	Storing Hashes
	Finding Keys in Redis
	Queues using Redis Lists
	Configurable Durability
	Redis: Tips and Resources
	CouchDB
	About CouchDB
	Schemaless Database Design
	Documents and Versions
	Update Document
	Changes API
	Replication
	CouchDB Views
	MapReduce Primer: Map
	MapReduce Primer: Map
	MapReduce Primer: Map
	MapReduce Primer: Map
	MapReduce Primer: Map
	MapReduce Primer: Reduce
	MapReduce Primer: Reduce
	CouchDB Views: Example
	CouchDB Views: Example
	CouchDB Tips and Resources
	SQL, NoSQL and Beyond
	Thanks

