@8> NETCONOMY

Stateful
Stream Processing
without a Database

—_—

Apache Kafka Streams

Hans-Peter Grahsl
working & living in Graz =
technical trainer at @8> NETCONOMY

independent consultant & engineer
associate lecturer

~ irregular conference speaker "~

@hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

in today's
data architectures

* rising number of apps producing + consuming data

* need to integrate ever more data sources

* heterogeneous environments all over the place
 traditional technologies may struggle to cope with this

3 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

may lead to a

@hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

5 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

STREAMING

6 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

much more than messaging

* Apache Kafka is offering 3 key capabillities
* publish / subscribe to streams of records
* (permanently) store streams of records
* process streams of records in near real-time

@hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

Producer

8 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

Consumer

9 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

Connect

10 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

Streams

App

'«

Streams

App

11 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

Kafka Streams API

» stream processing with a library only approach
* lightweight applications

* build however & deploy wherever you like

* NO(!) additional cluiters or frameworks e.g.

. |
W)

* Processor AP| & Streams DSL
» configurable delivery guarantees

12 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

NOT (!)

managing clusters

Meet KSQL for

14 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

KSQL

 SQL streaming engine for Kafka
* concise & expressive

« SQL-like language and semantics
* NO(!) coding required

« extremely low entry barrier

joins, aggregations, windowing
UD(A)Fs - UDTFs pending...
built on top of KStream API

15

@hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

16

Streams

Kafka Streams

Kafka Streams

Kafka Connect

b lﬂn

Streams
App

\\

@hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

@hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

nmmmm...

18 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

N
”
.
\‘ :)
; ' .
» p
\ J
:
.
= , e - “

tryevf b

example:
near real-time

HOW TO
build this?

21 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

Process

Let's do It!

26 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

v \ - o
; oo 4
f, ‘
""" -

7 DONT,NEED DATABASES._

example: step 1

» using Kafka Connect

* e.g. this community connector
https://github.com/jcustenborder/kaftka-

connect-twitter

» configure the connector (JSON)

 manage connector via REST-like API
create | pause | resume | delete | status

28 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

{ "name": "tweets-twitter-source", "config": {
"connector.class”: "c.g.j.k.c.t.TwitterSourceConnector”,

29 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

31 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

example: step 2

» using Kafka Streams high-level DSL
e grouping and counting emojis
* updating top N emoji counts
* map tweets to emoji occurrences

* only a few lines of Java

32 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

calculate emoji counts

e |t all starts with tweets like this...

+* this 1s a twitter *

status 7 text with

calculate emoji counts

Key Value

raw input 1D, * this is a twitter *
status 2 text with
AR five emojis

extract emoji list ID [+, * .24 83,80

34 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

calculate emoji counts

Key Value

flatten the list

1D %

1D 2

1D /

1D A

1D A

35 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

calculate emoji counts

Key Value

set keys to values

finally group & count by key

36 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

result: continuously updated
with

Key Value

37 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

1:1 mapping to KStreams API

tweets.map((1d, tweet)
-> KeyValue.pair(id, EmojiUtils...))

@hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

example: step 3

* access to state stores with interactive queries
 KStreams offers all needed metadata

+ @ RPC integration left for developers &

40 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

REST controller

@RestController

@RequestMapping("interactive/queries/")

@CrossOrigin(origins = "*")
StateStoreController {

StateStoreService service;

41 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

REST controller methods

@GetMapping("emojis/{code}")
Mono<ResponseEntity<EmojiCount>>
getEmoji1(@PathVariable String code) {
service.querySingleEmojiCount(code);

@GetMapping("emojis")
Flux<EmojiCount> getEmojis = {
service.queryAllEmojiCounts();

42 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

state store access In service

StreamsMetadata metadata =
kafkaStreams.metadataForKey(
"your-store-name", emoji, Serializer...

)

43 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

state store access In service

(1tsMe.equals(metadata.hostInfo())) {
ReadOnlyKeyValueStore<String,Long> kvStoreEmojiCounts =
kafkaStreams.store("your-store-name",
QueryableStoreTypes.keyValueStore());

Long count = kvStoreEmojiCounts.get(emoji);
Mono. just(
ResponseEntity<>(EmojiCount(...),HttpStatus.OK)

)

44 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

state store access In service

String location = String.format("http://%s:%d/.../%s",
metadata.host(),metadata.port(),emoji);

Mono. just(
ResponseEntity.status(HttpStatus.FOUND)
.location(URI.create(location)).build()
);

45 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

WHAT IF 1 TOLD YOU

f«' \
|
|

R \
THERE IS NO NEED FOR POLLING?
S — Y .

example: step 4

* reactively consume from changelog topics
» stream any changes to clients using SSE

48 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

notifications via SSE

@GetMapping(path = "emojis/updates/notify",
produces = MediaType.TEXT_EVENT_STREAM_VALUE)
Flux<EmojiCount> getEmojiCountsStream @ {
service.consumekEmojiCountsStream();

49 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

a
i
<
O
"
I
7
J
-

y mission |
accomplished

51 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

try it yourself!

https://github.com/hpgrahsl/voxxed-days-ticino-2018

https://speakerdeck.com/hpgrahsl/stateful-and-reactive-stream-
processing-applications-without-a-database-at-
voxxedticino-2018

52 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

&A ?

53 @hpgrahsl | #/DT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

@ NETCONOMY

