
Stateful & Reactive
Stream Processing Applications
without a Database
Apache Kafka Streams

❤
 Spring Boot 2.0

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

$ whoami

• Hans-Peter Grahsl

• working & living in Graz

!

• technical trainer at
• independent consultant & engineer
• associate lecturer

•

"

 irregular conference speaker

"

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland2

challenges in today's
data architectures
• rising number of apps producing + consuming data

• need to integrate ever more data sources

• heterogeneous environments all over the place

• traditional technologies may struggle to cope with this

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland3

challenges
may lead to a
GIANT MESS

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland4

Apache
Kafka

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland5

STREAMING
PLATFORM

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland6

much more than messaging
• Apache Kafka is offering 3 key capabilities

• publish / subscribe to streams of records

• (permanently) store streams of records

• process streams of records in near real-time

fault-tolerance & horizontal scalability

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland7

Producer

API
@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland8

Consumer

API
@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland9

Connect

API
@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland10

Streams

API
@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland11

Kafka Streams API
• stream processing with a library only approach
• lightweight applications

• build however & deploy wherever you like

• NO(!) additional clusters or frameworks e.g.

• Processor API & Streams DSL
• configurable delivery guarantees

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland12

writing applications

NOT (!)
managing clusters

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland13

Meet KSQL for
skyrocketing
productivity

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland14

KSQL

• SQL streaming engine for Kafka

• concise & expressive

• SQL-like language and semantics

• NO(!) coding required

• extremely low entry barrier
• joins, aggregations, windowing
• UD(A)Fs - UDTFs pending...
• built on top of KStream API

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland15

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland16

central
nervous system

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland17

example ?
hmmmm...

!

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland18

example:
near real-time
Emoji Tracking

HOW TO
build this?

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland21

emoji tracking | step 1

store
ingest subset of public live tweets from Twitter

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland22

emoji tracking | step 2

process
extract emojis - group & count them - maintain top N

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland23

emoji tracking | step 3

query
single emoji count - all emoji counts - top N emojis

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland24

emoji tracking | step 4

notify
consumable near-realtime change streams of updates

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland25

Let's do it!
@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland26

example: step 1
ingest tweets
• using Kafka Connect

• e.g. this community connector
https://github.com/jcustenborder/kafka-
connect-twitter

• configure the connector (JSON)
• manage connector via REST-like API

create | pause | resume | delete | status
@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland28

{ "name": "tweets-twitter-source", "config": {
 "connector.class": "c.g.j.k.c.t.TwitterSourceConnector",
 "twitter.oauth.accessToken": "...",
 "twitter.oauth.consumerSecret": ...",
 "twitter.oauth.consumerKey": "...",
 "twitter.oauth.accessTokenSecret": "...",
 "kafka.status.topic": "tweets",
 "process.deletes": false,
 "key.converter": "org.apache.kafka.connect.json.JsonConverter",
 "key.converter.schemas.enable": false,
 "value.converter": "org.apache.kafka.connect.json.JsonConverter",
 "value.converter.schemas.enable": false,
 "filter.keywords": "..."
} }

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland29

!

!

!

!

!

!

!

NO CODE!!

!

!

!

!

!

!

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland31

example: step 2
process tweets
• using Kafka Streams high-level DSL

• grouping and counting emojis

• updating top N emoji counts

• map tweets to emoji occurrences

• only a few lines of Java

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland32

calculate emoji counts
• It all starts with tweets like this...
!
this is a twitter

!

 status

⛰

 text with

##

 five emojis
@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland33

calculate emoji counts

Key Value

raw input ID !this is a twitter!
status ⛰ text with
five emojis

extract emoji list ID [!,!,⛰,#,#]

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland34

calculate emoji counts

Key Value

flatten the list

ID !

ID !

ID ⛰

ID #

ID #

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland35

calculate emoji counts

Key Value

set keys to values

! ""

! ""

⛰ ""

""

""

finally group & count by key

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland36

result: continuously updated
KTable with emoji counts

Key Value

! 2

⛰ 1

2

... ...

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland37

1:1 mapping to KStreams API

KTable<String, Long> emojiCounts =
 tweets.map((id,tweet)
 -> KeyValue.pair(id, EmojiUtils...))
 .flatMapValues(emojis -> emojis)
 .map((id,emoji) -> KeyValue.pair(emoji, ""))
 .groupByKey(...).count(...);

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland

example: step 3
query results
• access to state stores with interactive queries

• KStreams offers all needed metadata

•

!

 RPC integration left for developers

!

> Reactive WebAPI powered by Spring Boot 2.0 <

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland40

REST controller
@RestController
@RequestMapping("interactive/queries/")
@CrossOrigin(origins = "*")
public class StateStoreController {

 private final StateStoreService service;

 [...]
}

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland41

REST controller methods
 @GetMapping("emojis/{code}")
 public Mono<ResponseEntity<EmojiCount>>
 getEmoji(@PathVariable String code) {
 return service.querySingleEmojiCount(code);
 }

 @GetMapping("emojis")
 public Flux<EmojiCount> getEmojis() {
 return service.queryAllEmojiCounts();
 }

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland42

state store access in service

StreamsMetadata metadata =
 kafkaStreams.metadataForKey(
 "your-store-name", emoji, Serializer...
);

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland43

state store access in service
if(itsMe.equals(metadata.hostInfo())) {
 ReadOnlyKeyValueStore<String,Long> kvStoreEmojiCounts =
 kafkaStreams.store("your-store-name",
 QueryableStoreTypes.keyValueStore());

 Long count = kvStoreEmojiCounts.get(emoji);
 return Mono.just(
 new ResponseEntity<>(new EmojiCount(...),HttpStatus.OK)
);
}

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland44

state store access in service

String location = String.format("http://%s:%d/.../%s",
 metadata.host(),metadata.port(),emoji);

return Mono.just(
 ResponseEntity.status(HttpStatus.FOUND)
 .location(URI.create(location)).build()
);

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland45

example: step 4
real-time notifications
• reactively consume from changelog topics

• stream any changes to clients using SSE

> Project Reactor's reactor-kafka <

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland48

notifications via SSE

@GetMapping(path = "emojis/updates/notify",
 produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux<EmojiCount> getEmojiCountsStream() {
 return service.consumeEmojiCountsStream();
}

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland49

!
 LIVE

!

DASHBOARD

 mission
accomplished

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland51

try it yourself!
source
https://github.com/hpgrahsl/voxxed-days-ticino-2018

slides
https://speakerdeck.com/hpgrahsl/stateful-and-reactive-stream-
processing-applications-without-a-database-at-
voxxedticino-2018

@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland52

THANK YOU

Q&A ?
@hpgrahsl | #VDT18 #VoxxedDays Ticino, 20th October 2018, Switzerland53

