
Frontend Architecture:
How to Build a Zoo?

unistyler

gossi

gos.si

Thomas gossi Gossmann



What is Software Architecture?

- Architecture is a skill, not (just) a role
- The ability to design a system, reason about tradeoffs and 

understand the design
- Flow of decisions (instead of upfront design work)
- “Software architecture is the stuff that’s expensive to change”

Examine this while building a zoo

Disclaimer: I’m not a domain expert for a zoo. This is all made up.



Part 1
Strategic Design

Level 1
Zoo



What does this product do? (1)



What does this product do? (2)



What does this product do? (3)



Identify the Domain

● Why do People come to the Zoo?
○ Animals (Fauna) ?
○ Plants (Flora) ?
○ Info-/Entertainment ?
○ Food & Drinks ?



Core
Animals

Generic
Food & Drinks

Restrooms

Supporting
Plants

Info-/Entertainment

Identify the Domain



Core
Animals

Generic
Food & Drinks

Restrooms

Supporting
Plants

Info-/Entertainment

Identify the Domain



Distilling the Domain

https://www.zoo-berlin.de



Distilling the Domain

Themed Areas

Aviary
Savanna
Antarctica
Asia
Mountains
Africa
Predators
Aquarium
Oceania



Bounded Contexts

● Multiple models can co-exist in a big project
● Contexts need explicit boundaries
● Model strictly consistent within the context
● Clear definitions communicate the purpose
● Context gives autonomy



Bounded Contexts

Option 1: Compounds
Reasons:

● They have natural boundaries
● Can react to outside events
● Autonomous inside

Picture from: https://www.glmv.com/work/zoo-boise-master-plan/



Reasons:

● Functional teams
● Ubiquitous language by discipline

Bounded Contexts

Option 2: Separate by Functional Staff

Zookeeper

- Food
- Water
- Clean compound

Medical Staff

- Anthropometry
- Blood samples
- Excrements

Gardener

- Which plants are growing?
- What are toxic plants to an animal?



Reasons:

● Cross-Functional teams per area
● Follows the team’s communication 

structure (Conway’s law)
● Keeps communication paths short

Bounded Contexts

Option 3: Areas



Bounded Contexts

Compounds Reasons:

● Natural Boundaries are a great 
metaphor

● I’m not a domain expert for Zoo at all
● Use themed areas for hierarchical 

organization

Picture from: https://www.glmv.com/work/zoo-boise-master-plan/



Zoom Levels

Level 1
Zoo

Level 2
Area

Level 3
Compound

Level 4
Code



model for visualising software 
architecture

“maps of your code”

C4 Model

Simon Brown c4model.com



Vocabulary = Scary

Bounded Context Distillin
g the Domain

De-composition

Core Dom
ain

Supporting Subdomain

Generic Subdomain

Context Mapping

Ubiquitous Language



Zoom Levels

Level 1
Zoo

Entire
Business

Level 2
Area

Business
Capabilities

Level 3
Compound

Business
Services

Level 4
Code

Business
Rules

You

Business



Zoom Levels

Level 1
Zoo

Entire
Business

Context

Level 2
Area

Business
Capabilities

Containers

Level 3
Compound

Business
Services

Components

Level 4
Code

Business
Rules

Code

You

Business

C4



Zoom Levels

Level 1
Zoo

Entire
Business

Context

Level 2
Area

Business
Capabilities

Containers

Level 3
Compound

Business
Services

Components

Level 4
Code

Business
Rules

Code

You

Business

C4



Level 1
ZooZoo Folder Structure



★ Understand the domain
★ Distilled the domain into manageable pieces
★ Carved out bounded context
★ Established a language that works across disciplines

Strategic Design

Result



Level 2
Area

Level 3
Compound

Part 2
Tactical Design



Level 2
AreaModels Expressed in Software

Entities

Value Objects

Events

Aggregates

Services

Repositories

Factories



Aggregates

Root Entity

Entity

Value Object
Value Object

Aggregate

Backend

Frontend



Aggregates

Root Entity

Entity

Value Object
Value Object

Aggregate

Root Entity’

Entity‘

Value Object’
Value Object’

Aggregate’

Backend

Frontend



Services

Backend

Frontend

Domain
Service Business Process

(eg. feeding Animals)



Services

Backend

Frontend

Domain
Service

UI
Screens
Forms
Status Elements

Business Process
(eg. feeding Animals)



User Interfaces



User Interfaces



User Interfaces



Component Classification
Areas 

Use for housing multiple 
compounds 

(Screens/Routes/Pages)

Pathways

The same walking 
infrastructure for visitors of 
a zoo



Component Classification
Compounds

A component representing 
a compound

Interior

Custom tailored interior for 
one compound

Carryables

Elements that can be 
moved around (from one 
compound to another)



Level 2
AreaModels Expressed in Software

Entities

Value Objects

Events

Aggregates

Services

Repositories

Factories



Collaborative exploration of complex 
business domains

Event Storming

Alberto Brandolini eventstorming.com

Event Command Read Model

System Policy Actor



Level 2
AreaModels Expressed in Software

Entities

Value Objects

Events

Aggregates

Services

Repositories

Factories

Commands



Object Oriented UX

Object-Oriented UX offers a better way 
to break up complexity, allowing us to 
work iteratively and holistically

OOUX

Sophia Prater ooux.com

Object Contents

MetadataActions



An OOUX Animal

Animal

Name

Family

Genus

Diet

Fur

Watch

Feed

Pet



Level 2
AreaBackend + Frontend

Entities

Value Objects

Events

Aggregates

Services

Repositories Factories

Commands

Backend

Frontend



Level 2
AreaBackend + Frontend

Entities

Value Objects

Events

Aggregates

Services

Repositories Factories

Commands

Backend

Frontend

Objects

Content

Metadata

Actions UI



Level 2
AreaBackend + Frontend (Communication)

Entities

Value Objects

Events

Aggregates

Services

Repositories Factories

Commands

Backend

Frontend

Objects

Content

Metadata

Actions UI



Level 2
AreaBackend + Frontend (Organization)

Entities

Value Objects

Events

Aggregates

Services

Repositories Factories

Commands

Backend

Frontend

Objects

Content

Metadata

Actions UI



Separate UI and Business Logic

Business Logic

● Aggregates / Entities / Value Objects
(Nouns)

● Actions
(Verbs)

● Policies & Rules

Visual Representation

● Communicate System State
● Offer Behavior

Benefits

● Maintainability
● Readability
● The feeling of “home”
● Fast feature development



Area Folder Structure

Bounded Context

Business Logic

UI

Theme Area

Bounded Context



★ Frontend Modeling = Backend + Design
★ Separate UI and Business Logic
★ Component Classification that follows the established language

Tactical Design

Result



Part 3
Code

Level 4
Code



Aggregate / Reactivity
● Plain JS/TS

(Framework 
Agnostic)

● Connect to your 
Reactivity System
(UI / State 
Management)



Aggregate / Reactivity
● Plain JS/TS

(Framework 
Agnostic)

● Connect to your 
Reactivity System
(UI / State 
Management)

Classes

● (de)serialization
● (re)hydration

What’s your 
choice?

Functional

● DTO
● transforms



Methods to either be commands that perform an action or queries that respond data, but 
neither both!

CQS: Command & Query Separation

Queries

- Questions: Ask facts about the system
- Abilities/Authorization: Control access

Actions & Commands

- Command Design Pattern
- Commands: Used in Backend to perform 

business logic
- Actions: Used in Frontend to connect 

vocabulary with designers and probably 
call commands in the backend



Questions:

Ask facts about the system?

Queries

Abilities:

Control access

Expect to have 
hundreds of these



Queries

Abilities:

Control access

Picture from: https://www.glmv.com/work/zoo-boise-master-plan/



❌ DO NOT

Inline conditionals (in templates)

✅ DO

Extract into function

Queries



Cause side-effects / Invoke commands on the backend

Actions



Connect to your UI
UI Code is reduced to its 
essentials

Connecting UI elements with 
your existing business logic



Deterministic Behavior and State Management
Example: 
Using a Statechart to control the mood of monkey

Deterministic behavior

Use existing business logic



Pure Core

● Extract core into plain JS/TS
○ Aggregates / Entities / Value Objects
○ Actions
○ Abilities & Questions

● Framework agnostic
● Control your app through core
● High and excellent test coverage
● Use folders as signposts



Three examples for core/

Use folders as signposts

Files + Folder give a home
Choose based on your needs



★ Core layer in plain JS/TS
★ Unit testing for your business logic
★ Connect them to your reactivity system
★ Connect core to UI, machines and other parts
★ Use CQS design pattern
★ Use folders as signposts

Code

Result



★ Use available methodologies (EventStorming, OOUX, Atomic Design)
★ Extract and apply the essence
★ Establish your own language bound to your product
★ Let the code speak your product

Summary



Thank you

unistyler

gossi

gos.si

Thomas gossi Gossmann


