
Horacio Gonzalez
@LostInBrittany

WebAssembly for 
Developers (web… or not)



Horacio Gonzalez

@LostInBrittany

Spaniard lost in Brittany, 
developer, dreamer and 
all-around geek



Did I say WebAssembly?
WASM for the friends...



WebAssembly, what's that?

Let's try to answer those (and other) questions...



A low-level binary format for the web

Not a programming language
A compilation target



That runs on a stack-based virtual machine

A portable binary format that runs on all modern browsers… 
but also on NodeJS!



With several key advantages



But above all...

WebAssembly is not meant to replace JavaScript



Who is using WebAssembly today?

And many more others...



A bit of history
Remembering the past 

to better understand the present



Executing other languages in the browser

A long story, with many failures...



2012 - From C to JS: enter emscripten

Passing by LLVM pivot



Wait, dude! What's LLVM?

A set of compiler and toolchain technologies



2013 - Generated JS is slow… 

Let's use only a strict subset of JS: asm.js

Only features adapted to AOT optimization



WebAssembly project

Joint effort



Hello W(ASM)orld
My first WebAssembly program



Do you remember your 101 C course?

A simple HelloWorld in C



We compile it with emscripten



We get a .wasm file...

Binary file, in the binary WASM format



We also get a .js file...

Wrapping the WASM



And a .html file

To quickly execute in the browser our WASM



And in a more Real WorldTM case?

A simple process:

● Write or use existing code
○ In C, C++, Rust, Go, AssemblyScript...

● Compile
○ Get a binary .wasm file

● Include
○ The .wasm file into a project

● Instantiate
○ Async JavaScript compiling and instantiating the .wasm binary



I think I need a real example now

Let's use WASM Explorer 
https://mbebenita.github.io/WasmExplorer/ 

https://mbebenita.github.io/WasmExplorer/


Let's begin with the a simple function

WAT: WebAssembly Text Format
Human readable version of the .wasm binary



Download the binary .wasm file

Now we need to call it from JS...



Instantiating the WASM

1. Get the .wasm binary file into an array buffer

2. Compile the bytes into a WebAssembly module

3. Instantiate the WebAssembly module



Instantiating the WASM



Loading the squarer function

We instantiate the WASM by loading the wrapping JS



Using it!

Directly from the browser console (it's a simple demo…)



WASM outside the browser
Not only for web developers



Run any code on any client… almost

Languages compiling to WASM



Includes WAPM

The WebAssembly Package Manager



Some use cases
What can I do with it?



Tapping into other languages ecosystems

Don't rewrite libs anymore



Replacing problematic JS bits

Predictable performance
Same peak performance, but less variation



AssemblyScript
Writing WASM without learning a new language



TypeScript subset compiled to WASM

Why would I want to compile TypeScript to WASM?



Ahead of Time compiled TypeScript

More predictable performance



Avoiding the dynamicness of JavaScrip

More specific integer and floating point types



Objects cannot flow in and out of WASM yet

Using a loader to write/read them to/from memory



No direct access to DOM

Glue code using exports/imports to/from JavaScript



Future
To the infinity and beyond!



WebAssembly Threads

Threads on Web Workers with shared linear memory



SIMD



Garbage collector

And exception handling


