
g

Getting your Team Passionate  
About Web Performance  

to Achieve Performant Web Apps

& /phacks



Hi! I am Nicolas Goutay. I work at Theodo, a web 
consultancy based in Paris, New York & London. I 
build JS & Python web applications. 

I run the JAMStack Paris meetup and help organize 
the WeLoveSpeed conference. 

You can find me online (Twitter & GitHub) on 
@phacks.

👋 

& /phacks



& /phacks



February 2018, 3 Theodo web apps were performant. 

🚀 🚀 🚀

January 2019, 8 Theodo web apps were performant. 

🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀

Today, 27 Theodo web apps are performant. 

🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀

& /phacks



🏛 Structure

The Culture of Web Performance

& /phacks



🏛 Structure 

🛠 Tooling

The Culture of Web Performance

& /phacks



🏛 Structure 

🛠 Tooling 

💡 Knowledge

The Culture of Web Performance

& /phacks



Leveraging Lean methodologies

🏛 Structure

& /phacks



Lean is a systematic method to maximize customer 
value while minimizing waste.

Helped propel Toyota from a small company to the 
world’s largest automaker in ~50 years.

What is Lean?

Its roots trace back to manufacturing, but it can be 
applied to any industry, including digital product 
crafting.

& /phacks



Identifying the Value Stream

In Web Perf, the Value Stream would be all the steps for a 
website to go from the initial user request to it being 
interactive.

& /phacks

In Lean, the Value Stream is a representation of all the 
value-added steps in the process to go from the raw 
materials to the finished product.

It helps you understand and visualize the whole process, 
so that you can easily see waste and fight it.



Identifying the Value Stream

& /phacks

We mapped the Value Stream, from backend to frontend 
and back again, and set out to determine maximum 
durations at every step.



Identifying the Value Stream

& /phacks



Identifying the Value Stream

۵ ⏱ ❌ ۿ

Ѭ۵ ⏱ ✅

Ѭ

Cache Cedjheb: Ph_laje

۵ ⏱
✅ ۿ

Ѭ

& /phacks



Identifying the Value Stream

👀 Forces to look at the whole process, not only frontend/
backend

⏱ Setting standard times meant that teams asked for help 
much sooner, and it was easier and faster to help them

💵 Great format to communicate with stakeholders and 
get buy-in, as it makes “tech stuff” much more tangible

& /phacks



🛑 In Toyota factories, whenever a defect is spotted on the 
assembly line, the operator stops the whole line to try and 
fix the defect instead of passing it down the line.

Jidoka: catch problems at the earliest

& /phacks

🛠 Then, the process is refined to make sure that it 
prevents that defect from happening again.



Jidoka: catch problems at the earliest

In the IDE We use the Import Cost VSCode extension to 
detect heavy libraries when we add them to our code.

& /phacks



Jidoka: catch problems at the earliest

In the command line: We spot avoidable library 
duplication in bundles using yarn.lock information

Runs automatically on yarn or yarn add

& /phacks



Jidoka: catch problems at the earliest

In the CI We check on each PR if the bundle size of our 
web site is under a certain threshold (here, 500Kb).

& /phacks



Jidoka: catch problems at the earliest

Finding the right threshold: Find your users’ average 
network speed, verify them & use this handmade, organic 
& gluten-free Performance Budget Calculator

& /phacks



The Tools of the Trade

🛠 Tooling

& /phacks



Little-known Chrome Dev Tools for Web Perf

🎨 Coverage: Real-time CSS & JS code coverage.

💡 Helpful for: detecting unused libraries or dead code.

& /phacks



Little-known Chrome Dev Tools for Web Perf

🎨 Paint Flashing: Highlight in green the parts of the UI that 
has been painted by Chrome.

💡 Helpful for: detecting useless renders slowing down the UI.

& /phacks



Why Did You Render?

❓ why-did-you-render: Displays a warning in the Chrome 
console when a React makes unnecessary updates

💡 Helpful for: detecting useless renders slowing down the UI.

& /phacks



Keeping  it small

📦 bundlesize: CI-friendly bundle size checker.

💡 Helpful for: detecting if your JS goes over a certain 
threshold

& /phacks



Keeping  it small

😱 Bundlephobia: Find the cost of adding a NPM package 
to your bundle.

💡 Helpful for: Deciding between two libraries with similar 
functionalities.

& /phacks



Keeping  an eye on performance

📈 Falco: Theodo’s Open Source WebPageTest runner

& /phacks



Knowledge is power, Sharing is better

💡 Knowledge

& /phacks



Share your discoveries!

📆 Weekly Perf: Every week, we have a 1h informal 
meeting about performance, where we share new 
libraries, articles, and tackle specific problems on a 
project.

& /phacks

📣 Dedicated channel: On your company’s social network 
(Slack, Workplace…), set up a channel dedicated to all 
things Web Perf.

📈 Dedicated training : I help run a 4-week 
WebPerformance cursus, 1 hour every Monday, so that all 
developers can learn the basics and apply them to their 
projects



Best resources to get started

💻 web.dev: Online Lighthouse audit; lots of tutorials to 
implement performance best practices with interactive 
exercises

& /phacks



Best resources to get started

📖 HPBN High Performance Browser Networking — a free 
e-book teaching deep understanding of how browsers & 
Web protocols work, so that you can get the most of them

& /phacks



& /phacks

Thanks!

🙏



Sources
My article in Planet Lean: https://planet-lean.com/doubling-performant-apps-
using-kaizen/ 

Import Cost VSCode extension: https://github.com/wix/import-cost 

Yarn tools to list duplicates: https://gist.github.com/phacks/
6878465820605e6c2946f034f70f662c 

Performance Budget Calculator: https://docs.google.com/spreadsheets/d/
1X7RTp0cQbuSTAlNDO7K-Ln5V4i3iwmWAO0Cndgs4ulw/edit?usp=sharing 

Bundlesize: https://github.com/siddharthkp/bundlesize 

Bundlephobia: https://bundlephobia.com 

Why Did You Render?: https://github.com/welldone-software/why-did-you-render 

Web.dev: https://web.dev/learn 

HPBN: https://hpbn.co/ 

Falco: https://getfal.co/
& /phacks

Slides
Available at: https://noti.st/phacks

https://planet-lean.com/doubling-performant-apps-using-kaizen/
https://planet-lean.com/doubling-performant-apps-using-kaizen/
https://github.com/wix/import-cost
https://gist.github.com/phacks/6878465820605e6c2946f034f70f662c
https://gist.github.com/phacks/6878465820605e6c2946f034f70f662c
https://gist.github.com/phacks/6878465820605e6c2946f034f70f662c
https://docs.google.com/spreadsheets/d/1X7RTp0cQbuSTAlNDO7K-Ln5V4i3iwmWAO0Cndgs4ulw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1X7RTp0cQbuSTAlNDO7K-Ln5V4i3iwmWAO0Cndgs4ulw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1X7RTp0cQbuSTAlNDO7K-Ln5V4i3iwmWAO0Cndgs4ulw/edit?usp=sharing
https://github.com/siddharthkp/bundlesize
https://bundlephobia.com
https://github.com/welldone-software/why-did-you-render
https://web.dev/learn
https://hpbn.co/
https://getfal.co/
https://noti.st/phacks

