
Kickstarting libraries of shared React
components for multiple teams

Me : Xavier Lefèvre 
Job !: Team leader of React and React Native
projects 
Company 🏢: BAM, a tech consulting and
development agency 
Passion 🤩: I love tech as much as I love travelling
which means I’m super happy to be here! I do also
love motorcycles.

👋 Hi!

Making reusable components 
across projects…

1. The origin and attempts of sharing components

2. A deep dive in some of our design decisions

3. How we organised ourselves to make it a success

Contents

"It would be awesome if we could finally and successfully
create shareable components in order to re-use them on different
apps, give them to other departments or even one day sell them

outside!”

Quote from our client in April 2018

It started with a wish

With our client, we produce several web apps per year for
different targets but with the same business behind.

So very similar components were remade from scratch many
times.

Why?

Let’s see what our client means 🤔

First attempt: Commando 🔫

Commando
Codebase

Contrib
utes

Contributes

App 1
Codebase

App 1 Team App 1
Live

Owns

App 2
Codebase

App 2 Team

App 2
Live

Owns

One JS
Bundle Imported JS script

Second attempt: Tapas 🌮

Tapas
Codebase

Owns

Contributes

App 1
Codebase

App 1 Team App 1
Live

Owns

App 2
Codebase

App 2 Team

App 2
Live

Owns

JS Bundle
Output

Packaged 
on App bundle

JS Bundle
Output

One Versioned
JS Bundle

Latest attempt: Component Studio ⚙

App 1
Codebase

App 1 Team App 1
Live

Owns

App 2
Codebase

App 2 Team

App 2
Live

Owns

Owns

Core Team

Component
Studio

Codebase

Contri
butes

Contributes

Packaged 
on App bundle

JS Libraries

Demonstration time 🍿

Let’s dive in for some tips!

Let’s zoom in 3 interesting aspects

Component
Studio Codebase

Packaged 
on App bundle

JS Libraries

App 1
Codebase

App 2
Codebase

3. How to limit the
impact of breaking
changes

🔍🔍

1. Packages and
components
organisation

🔍

2. Components
code structure

We follow Atomic Design principles
Organism

Molecule
Atom

The impact on our code organisation

Atoms
Pure UI - No business - 
Totally Customisable and
Composable

UI

Molecules
Business connected - 
Composable when sharing
a common business
purpose

Widgets

Fundsheet Chatbot
Organisms
Full page feature -
Satisfies a user need

A deeper look at the components code

A deeper look at the UI code

A deeper look at the Widgets code

A deeper look at the Products code

What is a breaking change?

A breaking change is a change in one part of
a software system that causes other parts to fail.

Which happens when you change the existing API
of a library without warning your users.

What should I pay attention to?

• Exposed components and functions
names

• Components props or function
parameters

• The component style, but more risky
its taken space (height, width…)

• An upgrade in a peer
dependency which has breaking
changes

What we set-up to help developers anticipate

• API exposed as exported
Flow types

• Changes in the Flow API
notified by Danger on the
Pull Request

• Automatic SemVer based on
commits, releasing major
when breaking change

• Automatic changelog
generation

How do we know our project is
successful?

Our return on investment

Component Studio 
full cost

Component cost if
developed on

“normal” project

Number of times of
reuse of the
componentX -(Σ

components

)

The tech team main focus is to reduce the project cost by
approaching a flawless codebase and a fast development

process.

But we did not arrive to this point without struggling 🤯!

So we started tracking issues…

Every problem the contributors meet on the project they
create an issue for the core team.

Number of issues VS Contributions

… and then tackling those issues!

1. An hour every day of issue prioritisation and solving:
• 10min: We first take a look at the ongoing actions
• 20min: We then prioritise based on the type of issue and

the developer’s lost time
• 30min: Finally we take the most urgent issues and find

their causes

2. Weekly actions to tackle the biggest root causes

So, is it worth it?
👍 or 👎

We saved around 18% of development cost
since April 2018.

Now the UI is naturally more consistant across
all apps.

Thanks!🙏

@xavi_lefevre

xavierlefevre

Special thanks to everybody that worked
on this project: 

I am able to share all this because of a
huge team work since day 1.

Appendix

• Complete project stack

• Global architecture

• Atomic Design deep dive

• Development Flow

• Our current issues

• Links

What is the project made of?

Generate packages or
components

matching our code
standards

Manage several
packages in one

repository

Our stack in detail

Global Architecture

How did we define an atom?

Our UI components:
• Extremely composable
• Highly customisable
• Not connected
• Not related to the business

How did we define a molecule?

Our Widgets components:
• Composable per business scope
• Reasonably customisable
• Represents one business part
• Has little to no value by itself for the

final user
• Is composed of UI components
• Exported dumb or connected

How did we define an organism?

Our Products components:
• Connected full-fledged feature
• Satisfy a user need
• Usually takes most of the page

space
• Not composable
• Not customisable
• Is composed of Redux + Widgets

and UI components
• Exported as a standalone or in two

pieces Redux & Component

And this is our development flow

How do we know it’s
worth it to add a new
shared component?

Anticipate breaking
changes!!

And this is our advanced development flow 🤯

Know when to add a new component!

Our current challenges

• Better onboarding and documentation
• Yarn Link
• Better Flow coverage
• Re-definition of our testing strategy
• Performance - slimmer packages

A website listing most design systems: https://adele.uxpin.co

Top design systems:
• Pinterest - Gestalt: https://pinterest.github.io/gestalt
• Ant design: https://ant.design
• Palentir - Blueprint: https://blueprintjs.com
• Segment.io - Evergreen: https://evergreen.segment.com
• Telerik - Kendo UI: https://www.telerik.com/kendo-ui
• Element (Vue): https://element.eleme.io
• Argon: https://demos.creative-tim.com/vue-argon-design-system

Finding other design systems

https://adele.uxpin.com
https://pinterest.github.io/gestalt
https://ant.design
https://blueprintjs.com
https://evergreen.segment.com
https://www.telerik.com/kendo-ui
https://element.eleme.io
https://demos.creative-tim.com/vue-argon-design-system

• Atomic design: http://bradfrost.com/blog/post/atomic-web-design

Links

http://bradfrost.com/blog/post/atomic-web-design

