High-performing engineering
teams and the Holy Grail

A |

CHCF Cloud Mative L andscape Overmtaimed ? Moz ses the CHEF Trul Mag. That and the méeraciies issdecape s at Lonclio

Contreous i=tegratos & el
srtnsous =g et wary T

Calmtuze Sreaming L Weaspeg Appization Debnfos L imege Buld

App D on and Develapment

P i s

st rafi an &

‘|

| ==

E-CCER

Jeremy Meiss
O circleci
Director, DevRel & Community

¥ @lAmJerdog

So back to the tech industry....

\

YOU SEE

ot 1ol
:

HE HOLY GRAIL

ke

fu |

'-. : I
* M

~_ THEHOLY HAND GRENADE FOR -'
* " HIGH-PERFORMING ENGINEERING TEAMS

Cl/CD Benchmarks for
high-performing teams

o & e

Duration Mean time Success Throughput

to recovery rate

So what does the
data say?’

Duration

the foundation of software engineering velocity, measures the
average time in minutes required to move a unit of work
through your pipeline

{?-ﬁ

&
And mere Wns _Hlﬂ:il Ilalali:m |

So what is an ideal Duration?

<=10 minute builds

"a good rule of thumb 1is to keep your builds to no
more than ten minutes. Many developers who use CI
follow the practice of not moving on to the next task
until their most recent checkin integrates
successfully. Therefore, builds taking longer than
ten minutes can interrupt their flow."

—-- Paul M. Duvall (2007). Continuous Integration: Improving Software Quality and Reducing Risk

Duration: What the data shows

50% <= 3.3 mins

715% < 9mins
Avg ~11mins
95th percentile >=27mins |

Benchmark: 5-10mins

Improving test coverage

Add unit, integration, Ul, and end-to-end testing across all app layers
Incorporate code coverage tools into pipelines to identify inadequate testing
Include static and dynamic security scans to catch vulnerabilities
Incorporate TDD practices by writing tests during design phase

Optimizing your pipelines

Use test splitting and parallelism to execute multiple tests simultaneously
Cache dependencies and other data to avoid rebuilding unchanged portions
Use Docker images custom made for Cl environments

Choose the right machine size for your needs

Duration and the Platform Team

|dentify and eliminate impediments to developer velocity

Set guardrails and enforce quality standards across projects
Standardize test suites and Cl pipeline configs, i.e. shareable config
templates and policies

Welcome failed pipelines, i.e. fast failure

Actively monitor, streamline, and parallelize pipelines across the org

Mean time to Recovery

the average time required to go from a failed build
signal to a successful pipeline run

Mean ti

"a

indicati

ne to recovery is

ve of resilience

] server

Source control server

"A key part of doing a continuous build is that if
the mainline build fails, it needs to be fixed right
away. The whole point of working with CI is that
you 're always developing on a known stable base.”

-— Fowler, Martin. "Continuous Integration." Web blog post. . 1 May 2006. Web.

https://martinfowler.com/articles/continuousIntegration.html#:~:text=and%20remove%20them.-,Fix%20Broken%20Builds%20Immediately,CI%20is%20that%20you%27re%20always%20developing%20on%20a%20known%20stable%20base,-.%20It%27s%20not%20a

So what MTTR is ideal?

<=60min MTTR on
default branches

MTTR: What the data shows

50% <=64 mins

top 25% <=15 mins
top 5% <=5 mins
75th percentile <=22 hrs

Benchmark: 60mins

"10 minutes is a striking
improvement - what happened?”

Two tactors impacting reduced MTTR

e Economic pressures in the macro environment + rising competition in the
micro environment, forcing teams to prioritize product stability and reliability
over growth

e High performers increasingly rely on platform teams to achieve steadier and
more resilient development pipelines with built-in recovery mechanisms.

Treat your default branch as the
liteblood of your project

Getting to faster recovery times

Treat your default branch as the lifeblood of your project

Set up instant alerts for failed builds using services like Slack, Twilio, or
Pagerduty.

Write clear, informative error messages for your tests that allow you to
quickly diagnose the problem and focus your efforts in the right place.

SSH into the failed build machine to debug in the remote test environment.
Doing so gives you access to valuable troubleshooting resources, including
log files, running processes, and directory paths.

MTTR and the Platform Team

Ephasise the value of deploy-ready, default branches, with clear
processes & expectations for failure recovery across all projects
Set up effective monitoring and alerting systems, and track
recovery time

Limit frequency and severity of broken builds with role-based
AC and config policies

Config- and Infrastructure-as-Code tools limit potential for
misconfig errors

Actively monitor, streamline, and parallelize pipelines across the
org

Success Rate

number of passing runs divided by the total
number of runs over a period of time

NOwW g0 away...

Lot iwill
tauntyou a
second time!

So what Success rate is ideal?

90%+ Success rate on
default branches

Success rate: What the data
shows

avg on default 77%
avg on non-default 67%

Benchmark: 90%+ on default

Success rate and the Platform Team

o With low success rates, look at your MTTR and shorten
recovery time first
e Set a baseline success rate, then aim for continuous

improvement, looking for flaky tests or gaps in test coverage
e Be mindful of patterns and influence of external factors, i.e.
decline on Fridays, holidays, etc.

Throughput

average number of workflow runs that an organization
completes on a given project per day

Eil. T -

“Look, in wﬁr to maintain high velocity,
your pipelines must be optimized.”

!

So what Throughput is ideal?

't depends.

Throughput: What the data
shows

median

top 5%
average

Benchmark: at the speed of your business

Throughput and the Platform Team

e Map goals to reality of internal and external business situations,
l.e. customer expectations, competitive landscape, codebase
complexity, etc.

o Capture a baseline, monitor for deviations

o Alleviate as much developer cognitive load from day-to-day work

High-Performing Teams in 2023

4.0 3.7 3.3 .

. . . 10 minutes
minutes minutes minutes

.?2'9 .?3'6 5'1'3 <60 minutes
minutes minutes minutes

Avg 78% Average >90% on
on default|on default | on default default

As often as your
1.46 times|1.43 times |1.52 times| business requires -
not a function of your
tooling

‘Surely <insert programming language>
helps me achieve the "Holy Grail'1?”

1
2
3
4
5
6
7
8
9

10
11
12

TypeScript
Python
JavaScript
Ruby
Go
Java
PHP
Kotlin
HCL
Shell
Swift
HTML

13 Jupyter Notebook
14 C#

15 Scala
16 Vue
17 Elixir
18 C++
19 Clojure
20 Rust
21 CSS
22 Gherkin
23 Makefile
24 Jsonnet
25 Dart

1
2
3
4
5
6
7
8
9

10
11
12

Makefile
LookML
Shell
HCL
Mustache
Nix
SaltStack
Open Policy Agent
Smarty
Dockerfile
Jsonnet
Batchfile

Liquid
VCL
EJS
Jinja

PLSQL
PowerShell

SCSS

Haml
R
CSS
Python
C#
Vue

Gherkin CSS
JavaScript Elixir
PHP Vue
HCL Shell
Go Kotlin
Ruby C#
TypeScript Rust
Perl Dart
Python Jupyter Notebook
10 HTML Jinja
11 Java PLSQL

12 Clojure C
C++

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

10
11
12

Mustache
Perl
Smarty
Go
PLSQL
HCL
Vue
Scala
Makefile
Elixir
Shell
HTML

13
14
15
16
17
18
19
20
21
22
23
24
25

Jupyter Notebook
Rust
RobotFramework
C#
Python
Clojure
TypeScript
Ruby
Jinja
C
PHP
Kotlin
Dockerfile

1
2
3
4
5
6
7
8
9

Hack
Jsonnet
Dart
Swift
Elixir
Ruby
Mustache
Jupyter Notebook
TypeScript
Python
Elm
Liquid

13
14
15
16
17
18
19
20
21
22
23
24
25

Haskell
Starlark
PLSQL
Jinja
Lua
HTML
Clojure
Apex
XSLT
Perl
Ct++
PureScript
Gherkin

LAY
ER
_m_u..._.:m_wm_

Thank
You.

For feedback and swag:

E== timeline.jerdog.me
. 4 |AmJerdog

DEV jerdog

in /in/jeremymeiss

m @jerdog@hachyderm.io

http://circle.ci/jeremy

