
DevOps Patterns & Antipatterns
for Continuous Software Updates
“What can possibly go wrong?!”

Why software updates?

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

“As every company become a software company,
Security vulnerabilities are the new oil spills”

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Identify Fix Deploy

Identify
Immediately

Fix
OS upgrade

Deploy
years

Identify
2 months

Fix
Struts upgrade

Deploy
2 months

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Identify
As fast as possible

Fix
As fast as possible

Deploy
As fast as possible

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

This is not
a new idea!

XP: short feedback
Scrum: reducing cycle time

to absolute minimum
TPS: Decide as late as

possible and Deliver as fast
as possible
Kanban: Incremental

change

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #dockercon jfrog.com/shownotes@ErinMeyerINSEAD’s “Culture Map”

🎩

shownotes

http://jfrog.com/shownotes

Slides

Video

Links

Comments, Ratings

Raffle

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Do we want
it?

Let’s
update!

Are there
any high

risks?

How about no

Do we trust
the

update?

Update
available

No

Yes

Yes

Yes

NoNo

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

number of artifacts as a symptom of complexity

@jbaruch @jfrog #LiquidSoftware www.liquidsoftware.com

IoT

Serverless

Docker

Infrastructure as Code

Continuous Delivery

Continuous Integration

Agile

Microservices

2000

Today

The problem is not the code, it’s the data. Big data.

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

#emptyenvelopefromchina

@jbaruch #LiquidSoftware #DevOpsUnderground
http://jfrog.com/shownotes

Do we want
it?

Let’s
update!

Are there
any high

risks?

Can we
verify the
update?

How about no

Do we trust
the

update?

Update
available

No

Yes

Yes

Yes
Yes

NoNoNo

Time
consuming
verification

Features
that we

want

Acceptance
tests costs

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Do we want
it?

Let’s update!

Are there
any high

risks?

Update
available

No

Yes

No one
asked you

(auto update)

Your browser
Twitter in your browser
Twitter on your smartphone
Your smartphone OS?!

What can possibly
go wrong?

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

Local rollback

Problem: update went
catastrophically wrong and
an over the-air patch can’t
reach the device
Solution: Have a previous

version saved on the device
prior to update. Rollback in
case problem occurred

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

OTA software
updates

Problem: physical recalls
are costly. Extremely costly.
Also, you can’t force an
upgrade.
Solution: Implement over

the air software updates,
preferably, continuous
updates.

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

continuous OTA updates are like normal OTA updates,

but better

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

continuous
updates

Problem: In batch updates
important features wait for
non-important features.
Solution: Implement

continuous updates.

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

You thought your problems are hard?

Things under your control Server-side Updates IoT (Mobile, Automotive,
Edge) Updates

The availability of the target ✓ ✕
The state of the target ✓ ✕
The version on the target ✓ ✕
The access to the target ✓ ✕

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

KNIGHT-MARE

New system reused old APIs
1 out of 8 servers was not

updated
New clients sent requests to

machine contained old code
Engineers undeployed
working code from updated
servers, increasing the load on
the not-updated server
No monitoring, no alerting, no
debugging

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

Automated
deployment

Problem: People suck at
repetitive tasks.
Solution: Automate

everything.

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

frequent updates

Problem: Seldom
deployments generate
anxiety and stress, leading
to errors.
Solution: Update

frequently to develop skill
and habit.

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:
state awareness

Problem: Target state can
affect the update process
and the behavior of the
system after the update.
Solution: Know and

consider target state when
updating.
Reverting might require
revering the state.

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Cloud-dark

New rules are deployed
frequently to battle attacks
Deployment of a single

misconfigured rule
Included regex to spike

CPU to 100%
“Affected region: Earth”

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

Progressive
Delivery

Problem: Releasing a bug
affects ALL the users.
Solution: Release to a

small number of users first
effectively reducing the
blast radius and observe.
If a problem occurs, stop
the release, revert or
update the affected users.

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

observability

Problem: Some problems
are hard to trace relying on
user feedback only
Solution: Implement

tracing, monitoring and
logging

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

Rollbacks

Problem: Fixes might take
time, users suffer in a
meanwhile
Solution: Implement

rollback, the ability to
deploy a previous version
without delay

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

feature flags

Problem: Rollbacks are not
always supported by the
deployment target platform
Solution: Embed 2 versions

of the features in the app
itself and trigger them with
API calls

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates pattern:

zero downtime
updates

Problem: You will probably
loose all your users if you
shut down for 5 weeks to
perform an update.
Solution: Perform zero-

downtime OTA small and
fequent continuous
updates.

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Continuous
updates

Frequent
Automatic
Tested
Progressively delivered
State-aware
Observability
*Local Rollbacks

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Do we want
it?

Let’s update!

Are there
any high

risks?

Do we trust
the

update?

Update
available

No

Yes

Yes

Yes

Sure, why not?
(auto update)

Our goal is to transition from bulk and rare software updates to
extremely tiny and extremely frequent software updates;
so tiny and so frequent that they provide an illusion of
software flowing from development to the update target.

We call it the Liquid Software vision.

”

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Corner cases?

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

@jbaruch #LiquidSoftware #DevOpsUnderground http://jfrog.com/shownotes

Q&A and twitter ads

@jbaruch

#LiquidSoftware

#DevOpsUnderground

https://liquidsoftware.com

https://jfrog.com/shownotes

