
Improving Visitor Experience with Edge Computing
@AndyDavies, July 2020

https://www.flickr.com/photos/yoyo_hick/2423655297

Where is the Edge?

Device? Cloud?Network?

Edge computing isn’t really a new concept

https://www.flickr.com/photos/edenpictures/36796298946

Safely deploying customer code has been a challenge

https://www.flickr.com/photos/chrisrandall/6136814248

Configuration languages have got us a long way

But what could we do with greater power and flexibility?

https://www.flickr.com/photos/qubodup/14750352671

Advantages of processing at the edge

• Faster responses as endpoint is closer to the visitor

• Reduced load at the origin

• Orchestrate data from 3rd-parties

Improvements in several areas made it feasible

• ServiceWorker API provided a model for programmable proxies

• Overhead of isolation between processes reduced

• Serverless programming became common

Service Workers are in-browser network proxy…

…can intercept and rewrite both requests and responses

Edge Workers are a similar concept…

…it’s just the proxy is in a different place

New isolation techniques reduced resource overhead

• Micro Virtual Machines (VMs)

• V8 Isolates

• Web Assembly (WASM)

Virtual Machines V8 Isolates Web Assembly

Resource requirements vary by approach

Reducing overhead

Virtual Machine V8 Isolates Web Assembly

Resource Consumption High Low Low

Startup Time < 125ms

(just for VM) < 5ms < 40μs

Runtime Overhead High Low Low

Language(s) BYO JavaScript / WASM C, Rust, Go, AssemblyScript

Some approaches are faster than others

Using JavaScript makes it very familiar

// Hello World Example

export function onClientRequest(request) {

 request.respondWith(

 200, {},

 '<html><body><h1>Hello World From Akamai EdgeWorkers</h1></body></html>');

}

export function onClientResponse(request, response) {

 response.setHeader('X-Hello-World', 'From Akamai EdgeWorkers');

}

Using JavaScript makes it very familiar

// Hello World Example

addEventListener('fetch', event => {
 event.respondWith(handleRequest(event.request))
})

/**
 * Fetch and log a request
 * @param {Request} request
 */
async function handleRequest(request) {
 return new Response('Hello worker!', { status: 200 })
}

YMMV with other languages (Rust for example)

#[macro_use]
extern crate http_guest;

use http_guest::{Request, Response};

pub fn user_entrypoint(_req: &Request<Vec<u8>>) -> Response<Vec<u8>> {
 Response::builder()
 .status(200)
 .body("Hello, world!".as_bytes().to_owned())
 .unwrap()
}

guest_app!(user_entrypoint);

Either executed as binary on VM, or compiled to WASM

(module
 (type $t0 (func (param i32) (result i32)))
 (func $add_one (export "add_one") (type $t0) (param $p0 i32) (result i32)
 get_local $p0
 i32.const 1
 i32.add)
 (table $T0 1 1 anyfunc)
 (memory $memory (export "memory") 17))

Note: this is an example NOT the code from the previous slide

Text representation of WASM looks something like this

WASI allows WASM to access system functions

Managed and deployed as code

What might we do with these new capabilities?

https://github.com/akamai/edgeworkers-examples

Many examples…

What activities can be moved from…

…the origin to the edge?

…the client to the edge?

Examples

• More responsive user interactions

• Preserving privacy

• Proxying 3rd Parties

• Experiment with Performance Optimisations

Responsive User Interactions

Fast autocomplete

Clientside frameworks rely on fast APIs

3rd Parties as Content

Reviews are essential to the buying experience

How could an edge worker mitigate this issue?

Move client-side experimentation to the edge

Most AB / MV Testing services rely on large JavaScript bundles

• Delays while downloading

• Delays while executing

• Often use ‘anti-flicker’ scripts to hide the page while it reflows

Moving the experimentation off the client reduces these issues

But…

Move client-side experimentation to the edge

AB / MV Testing services are not just a large JavaScript bundle!

They also provide

• Cohort mangement

• Experiment creation

• Analytics

What do we need to solve these challenges with edge workers?

https://man.gl/optimizely-experimenting-at-the-edge

Optimizely supports moving snippet processing at edge

Many other client-side 3rd-parties slow the experience

• Personalisation

• Faceted search

• Chat

• Feedback

Could implementing these at the edge improve that?

Preserving Privacy

https://man.gl/chiefmartec-supergraphic-2019

How many tags are collecting visitor data?

https://requestmap.herokuapp.com

And what are they doing with it?

Preserve privacy by proxying analytics

https://www.flickr.com/photos/61287964@N00/5714826863

Cookie consent at the edge?

How do we get 3rd-Party Tags to offer their
features via the edge?

Experiment with Performance Optimisations

DevTools give us the ability to experiment with code locally

https://github.com/pmeenan/cf-workers

Create a proxy to rewrite the page

https://www.slideshare.net/patrickmeenan/getting-the-most-out-of-webpagetest

Use proxy via overrideHost in WebPageTest script

Where’s the appropriate place to carry out the work?

Some workloads may be unsuitable for network edge

• Machine Learning on device may be better for privacy
reasons

• Overhead of uploading client generated data may be
prohibitive

• What needs to remain on the origin?

Challenges

Technical

• Debugging, profiling code in environments we don’t control

Mindset

• It’s new, many services are still in beta, need to think about
how we architect our services

Closing Thoughts

Edge computing gives us new capabilities to improve our site’s
reliability, and our visitors experience and privacy

Vendors are adopting slightly different approaches

We haven’t worked out how to make the most of them yet

http://www.flickr.com/photos/auntiep/5024494612

@andydavies

hello@andydavies.me

http://noti.st/andydavies

