
@TRENTMWILLIS
#PerfMatters

GETTING OUT OF 
OUR USERS’ WAY
LESS JANK WITH WEB WORKERS



@TRENTMWILLIS
#PerfMatters

Hello PerfMatters! 
Think about your web 
app for a moment…



@TRENTMWILLIS
#PerfMatters

Cool Web App That Pays The Bills



@TRENTMWILLIS
#PerfMatters

Cool Web App That Pays The Bills



@TRENTMWILLIS
#PerfMatters

Cool Web App That Pays The Bills



@TRENTMWILLIS
#PerfMatters



@TRENTMWILLIS
#PerfMatters



@TRENTMWILLIS
#PerfMatters

How do we prevent 
numerous, large, and/or slow 
data operations from impacting 

our users?



@TRENTMWILLIS
#PerfMatters

Web Workers 
They help, but they complicate



@TRENTMWILLIS
#PerfMatters

GETTING OUT OF 
OUR USERS’ WAY
LESS JANK WITH WEB WORKERS



@TRENTMWILLIS
#PerfMatters

Sp
ide

y

@TRENTMWILLIS 
SENIOR UI ENGINEER AT NETFLIX



@TRENTMWILLIS
#PerfMatters

The Web Workers API 
“allows Web application authors to 

spawn background workers running 
scripts in parallel to their main page”



@TRENTMWILLIS
#PerfMatters

new Worker('worker.js');



@TRENTMWILLIS
#PerfMatters

new Worker('worker.js'); 
new SharedWorker('worker.js');



@TRENTMWILLIS
#PerfMatters

new Worker('worker.js');

It’s like a <script> but loads 
in a different thread!



@TRENTMWILLIS
#PerfMatters

Web Workers allow 
“for thread-like operation with 

message-passing as the 
coordination mechanism”



@TRENTMWILLIS
#PerfMatters

// main thread 
worker.postMessage(message);;



@TRENTMWILLIS
#PerfMatters

// worker thread 
self     // “window” for a Worker



@TRENTMWILLIS
#PerfMatters

// worker thread 
self.addEventListener( 
  'message', 
  event => { 
    console.log(event.data); 
  }; 
);



@TRENTMWILLIS
#PerfMatters

// worker thread 
self.addEventListener( 
  'message', 
  event => { 
    console.log(event.data); 
    self.postMessage(message); 
  }; 
);



@TRENTMWILLIS
#PerfMatters

// main thread 
worker.addEventListener( 
  ‘message', 
  event => console.log(event.data) 
);

Messaging is the bulk of the 
Web Workers API you need!



@TRENTMWILLIS
#PerfMatters

// main thread 
worker.terminate();



@TRENTMWILLIS
#PerfMatters

main

worker

new Worker()

worker.postMessage()

worker.addEventListener()

worker.terminate()

self.addEventListener() self.postMessage()

Web Worker life-cycle 



@TRENTMWILLIS
#PerfMatters

PROBLEMS



@TRENTMWILLIS
#PerfMatters

Problem: It is hard to know when a 
worker’s task is complete

worker.postMessage('doTask');

When am I done?



@TRENTMWILLIS
#PerfMatters

Problem: Problem: Workers are difficult to 
manage and coordinate

worker.postMessage('doTask'); 
otherWorker.postMessage('doOtherTask'); 
 
 
 
processResults( 
  taskResult, 
  otherTaskResult 
);

How do I manage both results?



@TRENTMWILLIS
#PerfMatters

Problem: 

How do I unit test this?

Problem: Workers are difficult to test 

worker.postMessage('doNetworkTask');



@TRENTMWILLIS
#PerfMatters

Problem: 

How do I unit test this?How do I stub the network?

Problem: Workers are difficult to test 

worker.postMessage('doNetworkTask');



@TRENTMWILLIS
#PerfMatters

Problem: Problem: Workers can not be 
dynamically defined

const worker = new Worker(data => { 
    // Expensive data operations... 
    return processedData; 
});

If only this was possible…



@TRENTMWILLIS
#PerfMatters

SOLUTIONS



@TRENTMWILLIS
#PerfMatters

Solution: Turn messages into 
Promises

Replace one platform 
feature with another!

Problem: It is hard to know when a 
worker’s task is complete



@TRENTMWILLIS
#PerfMatters

const postMessage = (worker, message) => new Promise(resolve => { 
    const resolution = (event) => { 
        worker.removeEventListener('message', resolution); 
        resolve(event.data); 
    }; 
    worker.addEventListener('message', resolution); 
    worker.postMessage(message); 
});

      postMessage 

Solution: Turn messages into Promises 



@TRENTMWILLIS
#PerfMatters

postMessage(worker, data).then(response => console.log(response));postMessage(worker, data)      response    console.log(response)

Solution: Turn messages into Promises 



@TRENTMWILLIS
#PerfMatters

const response = await postMessage(worker, data); 
console.log(response);

Solution: Turn messages into Promises 



@TRENTMWILLIS
#PerfMatters

promise-worker 
github.com/nolanlawson/promise-worker

Solution: Turn messages into Promises 



@TRENTMWILLIS
#PerfMatters

Solution: Use Promises (again)

Problem: Workers are difficult to 
manage and coordinate



@TRENTMWILLIS
#PerfMatters

Problem: Workers are difficult to 
manage and coordinate

Solution: Expose Worker methods 
as main thread functions



@TRENTMWILLIS
#PerfMatters

    backendOneWorker 
    backendTwoWorker 

Solution: Expose Worker methods 
as main thread functions



@TRENTMWILLIS
#PerfMatters

const data = await Promise.all([ 
    backendOneWorker.fetch('first'), 
    backendTwoWorker.fetch('second') 
]); 

Solution: Expose Worker methods 
as main thread functions



@TRENTMWILLIS
#PerfMatters

const data = await Promise.all([ 
    backendOneWorker.fetch('first'), 
    backendTwoWorker.fetch('second') 
]); 
const result = await processingWorker.process(data); 
console.log(result);

Solution: Expose Worker methods 
as main thread functions



@TRENTMWILLIS
#PerfMatters

const data = await Promise.all([ 
    backendOne.fetch('first'), 
    backendTwo.fetch('second') 
]); 
const result = await processing.process(data); 
console.log(result);

A good Worker abstraction 
looks like any other object!

Solution: Expose Worker methods 
as main thread functions



@TRENTMWILLIS
#PerfMatters

Comlink 
github.com/GoogleChromeLabs/comlink

Solution: Expose Worker methods 
as main thread functions



@TRENTMWILLIS
#PerfMatters

Workerize 
github.com/developit/workerize

Solution: Expose Worker methods 
as main thread functions



@TRENTMWILLIS
#PerfMatters

importFromWorker 
github.com/GoogleChromeLabs/import-from-worker

Solution: Expose Worker methods 
as main thread functions



@TRENTMWILLIS
#PerfMatters

Problem: Workers can not be 
dynamically defined

Solution: Create Workers from 
Blob URLs of functions



@TRENTMWILLIS
#PerfMatters

const workerFromFunction = (fn) => { 
    const src = `(${fn})();`; 
    const blob = new Blob([src], {type: 'application/javascript'}); 
    const url = URL.createObjectURL(blob); 
    return new Worker(url); 
};

Solution: Create Workers from 
Blob URLs of functions



@TRENTMWILLIS
#PerfMatters

greenlet 
github.com/developit/greenlet

Solution: Create Workers from 
Blob URLs of functions



@TRENTMWILLIS
#PerfMatters

promise-worker  -> turn Worker messages into Promises 
greenlet -> turn a Function into a Worker 
workerize -> turn a Module into Worker 

 comlink -> give a Worker a nice main thread interface 
importFromWorker -> turn a Module import into a Worker

Web Worker libraries to use 



@TRENTMWILLIS
#PerfMatters

Lumen 
bit.ly/netflix-lumen



@TRENTMWILLIS
#PerfMatters

Lumen



@TRENTMWILLIS
#PerfMatters

Lumen 
“The majority of data operations in Lumen are done 

in Web Workers. This allows Lumen to keep the main 
thread free for user interactions, such as scrolling and 
interacting with individual charts, as the dashboard 

loads all of its data.”



@TRENTMWILLIS
#PerfMatters

VaporBoy (WASMBoy) 
Runs a WASM-based GameBoy emulator 

with Web Workers for smooth UI 
vaporboy.net



@TRENTMWILLIS
#PerfMatters

Worker-To-Worker 
Communication

We can “weave” a 
web of Web Workers!



@TRENTMWILLIS
#PerfMatters

// worker thread 
const workerInWorker = new Worker('worker.js');



@TRENTMWILLIS
#PerfMatters

MessageChannel 
consists of 2 

MessagePorts



@TRENTMWILLIS
#PerfMatters

// main thread 
const worker1 = new Worker('worker-1.js'); 
const worker2 = new Worker('worker-2.js');



@TRENTMWILLIS
#PerfMatters

// main thread 
const worker1 = new Worker('worker-1.js'); 
const worker2 = new Worker('worker-2.js'); 

const channel = new MessageChannel();



@TRENTMWILLIS
#PerfMatters

// main thread 
const worker1 = new Worker('worker-1.js'); 
const worker2 = new Worker('worker-2.js'); 

const channel = new MessageChannel(); 

worker1.postMessage('MessagePort', [channel.port1]); 
worker2.postMessage('MessagePort', [channel.port2]);



@TRENTMWILLIS
#PerfMatters

A Transferable object can be transferred 
between execution contexts.

Normal 
Object

Transferable 
Object

Main Thread Web Worker



@TRENTMWILLIS
#PerfMatters

// worker thread 
self.addEventListener('message', (event) => { 
    if (event.ports.length) { 
    }; 
});



@TRENTMWILLIS
#PerfMatters

// worker thread 
self.addEventListener('message', (event) => { 
    if (event.ports.length) { 
        event.ports[0].onmessage = event => console.log(event.data); 
        event.ports[0].postMessage('hello from worker 2’); 
    }; 
});



@TRENTMWILLIS
#PerfMatters

const data = await Promise.all([ 
    backendOneWorker.fetch('first'), 
    backendTwoWorker.fetch('second') 
]); 
const result = await processingWorker.process(data); 
console.log(result);

You can do this entirely 
off the main thread!



@TRENTMWILLIS
#PerfMatters

Non-Blocking Canvas Graphics



@TRENTMWILLIS
#PerfMatters

OffscreenCanvas API 
Allows a <canvas> to be used in a Web Worker



@TRENTMWILLIS
#PerfMatters

Non-Blocking DOM Operations



@TRENTMWILLIS
#PerfMatters

worker-dom 
github.com/ampproject/worker-dom



@TRENTMWILLIS
#PerfMatters

Conway’s Game of Life 
canvas-of-life.glitch.me



@TRENTMWILLIS
#PerfMattersSo janky!



@TRENTMWILLIS
#PerfMattersMuch better!



@TRENTMWILLIS
#PerfMatters

You can do a LOT with 
Web Workers, but…



@TRENTMWILLIS
#PerfMatters

How do we test them?

Problem: Workers are difficult to test 



@TRENTMWILLIS
#PerfMatters

A Tale of Two Strategies

Problem: Workers are difficult to test 



@TRENTMWILLIS
#PerfMatters

Solution #1: Run the testing 
framework and worker in the 

same thread

Problem: Workers are difficult to test 



@TRENTMWILLIS
#PerfMatters

// Main thread 
<script src="test-framework.js"></script> 
<script src="worker.js"></script> 
<script src="tests.js"></script> 

// Or, worker thread 
importScripts('test-framework.js', 'worker.js'); 
// Your tests here...

Solution #1: Run the testing framework 
and worker in the same thread



@TRENTMWILLIS
#PerfMatters

That is NOT how Workers are used.

Solution #1: Run the testing framework 
and worker in the same thread



@TRENTMWILLIS
#PerfMatters

Solution #2: Treat your Worker 
as a Function

Problem: Workers are difficult to test 



@TRENTMWILLIS
#PerfMatters

test('transforms data', async (assert) => { 
    const worker = new Worker ('transform.js'); 
    const data = [1, 2, 3]; 
    const result = postMessage(worker, data); 
    assert.equal(result, `I'm transformed!`); 
});

Solution #2: Treat your Worker 
as a Function



@TRENTMWILLIS
#PerfMatters

Sub-Problem: How do we 
mock/stub calls from a Worker?

Solution #2: Treat your Worker 
as a Function



@TRENTMWILLIS
#PerfMatters

worker-box 
github.com/trentmwillis/worker-box

Sub-Problem: How do we mock/stub 
calls from a Worker?



@TRENTMWILLIS
#PerfMatters

canvas-of-life.glitch.me/tests

Sub-Problem: How do we mock/stub 
calls from a Worker?



@TRENTMWILLIS
#PerfMatters

Web Workers are 
powerful, but avoid using 
them directly, instead stand 
on the shoulders of giants. 
Let’s get out of our users’ 
way and give them 
better experiences!

Thank you!



@TRENTMWILLIS
#PerfMatters

Resources 
• Spider icon made by Freepik from www.flaticon.com 
• Web Workers spec: www.w3.org/TR/workers/ 
• Promise Worker: github.com/nolanlawson/promise-worker 
• Comlink: github.com/GoogleChromeLabs/comlink 
• Workerize: github.com/developit/workerize 
• ImportFromWorker: github.com/GoogleChromeLabs/import-from-worker 
• Greenlet: github.com/developit/greenlet 
• Lumen: bit.ly/netfl ix-lumen 
• Worker DOM: github.com/ampproject/worker-dom 
• Game of Life Demo: canvas-of-life.glitch.me 
• Worker Box: github.com/trentmwillis/worker-box

https://www.flaticon.com/authors/freepik
http://www.flaticon.com
https://www.w3.org/TR/workers/
https://github.com/nolanlawson/promise-worker
https://github.com/GoogleChromeLabs/import-from-worker
https://github.com/developit/workerize
https://github.com/GoogleChromeLabs/import-from-worker
https://github.com/developit/greenlet
http://bit.ly/netflix-lumen
https://github.com/ampproject/worker-dom
http://canvas-of-life.glitch.me
https://github.com/trentmwillis/worker-box

