GETTING OUT OF
OUR USERS’ WAY

LESS JANK WITH WEB WORKERS

TTTTTTTTTTTTT

Hello PerfMatters!

Q0 hinkaboutyourweb
app for a moment...

Cool Web App That Pays [he Bills

Cool Web App That Pays [he Bills

o O O

Cool Web vs T he Bills

O O

#PerfMatters
@TRENTMWILLIS

P

T\

FMY INTERNET IS LOAD YOU Pl{ﬁi OFCR

N .‘:“
e |

"

LOW SITET o
OW oR 17 THIS WEBSITEIS A PIECEOF SHIT 1000000000ADIINEE

#PerfMatters
@TRENTMWILLIS

How do we prevent
numerous, large, and/or slow
data operations from impacting

our users?

#PerfMatters
@TRENTMWILLIS

Web Workers
They help, but they complicate

#PerfMatters
@TRENTMWILLIS

Q0

GETTING OUT OF
OUR USERS’ WAY

LESS JANK WITH WEB WORKERS

TTTTTTTTTTTTT

>

@TRENTMWILLIS

SENIOR Ul ENGINEER AT NETFLIX

s@é@ﬁ

m“ °

o

The Web Workers API
“allows Web application authors to

spawn background workers running
scripts in parallel to their main page”

new Worker('worker.js');

#PerfMatters
@TRENTMWILLIS

new Worker('worker.js');
new SharedWorker('worker.js');

#PerfMatters
@TRENTMWILLIS

new Worker('worker.js');

#PerfMatters
@TRENTMWILLIS

Web Workers allow
“for thread-like operation with

message-passing as the
coordination mechanism”

// main thread
worker.postMessage (message) ;

#PerfMatters
@TRENTMWILLIS

// workRer thread
self // “window” for a Worker

#PerfMatters
@TRENTMWILLIS

self.addEventListener(
‘'message
event => 3
console.log(event.data);

§
)

#PerfMatters
@TRENTMWILLIS

self.addEventListenex(
‘message ',
event => 3
console.log(event.data);
self.postMessage (message) ;

§
)

#PerfMatters
@TRENTMWILLIS

00

Hessaﬁ'\nﬁ io the bulk of the
web workers AP You needl

worker.addEventListener(
‘message
event => console.log(event.data)

)

// main thread
worker.terminate():

#PerfMatters
@TRENTMWILLIS

Web Worker life-cycle

worker.postMessage () worker.terminate ()
new Workexr () worker.addEventListener ()
maln
worker EE— I—>

self.addEventlListener() self.postMessage()

PROBLEMS

#PerfMatters
@TRENTMWILLIS

't Is hard to know when a
worker's task Is complete

When am | done?

worker.postMessage('doTask');

VWorkers are difficult to
manage and coordinate

worker.postMessage('doTask');
otherWorker.postMessage('doOtherTask');

How do | manage both results?

processResults(
taskResult,
otherTaskResult

)

Problem: Workers are difficult to test

How do | unit test this?

worker.postMessage ('doNetworkTask') ;

#PerfMatters
@TRENTMWILLIS

VWorkers are difficult to test

How do | stub the network?

worker.postMessage ('doNetworkTask') ;

Workers can not be
dynamically definead

If only this was possible...

const worker = new Worker(data => 3

return processedData;

£);

SOLUTIONS

TTTTTTTTTTTTT

't Is hard to know when a
worker's task Is complete

Solution: Turn messages into
Promises

Replace one Pla+‘€ovm
e ature with another! o

o

Solution: Turn messages into Promises

const postMessage = (worker, message) => new Promise(resolve => 3
const resolution = (event) => 3
worker.removeEventlListener('message', resolution);
resolve(event.data) ;
£,
worker.addEventListener('message’', resolution);
worker.postMessage (message) ;

£);

#PerfMatters
@TRENTMWILLIS

Solution: Turn messages into Promises

postMessage(worker, data).then(response => console.log(response));

Solution: Turn messages into Promises

const response = awalt postMessage(worker, data);
console.log(response);

Solution: Turn messages into Promises

promise-worker

github.com/nolanlawson/promise-worker

VWorkers are difficult to
manage and coordinate

Solution: Use Promises (again)

VWorkers are difficult to
manage and coordinate

Solution: Expose Worker methods
as main thread functions

Solution: Expose Worker methods
as main thread functions

backendOnelWorker
backendTwoWorker

Solution: Expose Worker methods
as main thread functions

const data = await Promise.all(][
backendOneWorker.fetch(' 'fixrst'),
backendTwoWorker.fetch('second"')

1)

Solution: Expose Worker methods
as main thread functions

const data = await Promise.all(][
backendOneWorker.fetch('first'),
backendTwolWorker.fetch('second')

1);

const result = await processingWorker.process(data);

console.log(result);

Solution: Expose Worker methods
as main thread functions

const data = await Promise.all(][
backendOne.fetch('fixrst'),
backendTwo.fetch('second')

1);

const result = awalt processing.process(data);

console.log(result);

A 3000\ worker abstraction
looks ke a“‘:) other ob\'xec’r!

Q0

Solution: Expose Worker methods
as main thread functions

Comlink

github.com/GoogleChromelabs/comlink

Solution: Expose Worker methods
as main thread functions

Workerize

github.com/developit/workerize

Solution: Expose Worker methods
as main thread functions

importFromWorker

github.com/GoogleChromelabs/import-from-worker

Workers can not be
dynamically defined

Solution: Create Workers from
Blob URLs of functions

Solution: Create Workers from
Blob URLs of functions

const workerFromFunction = (£fn) => 3
const src = ($3fnt) () ; ;
const blob = new Blob([src], itype: 'application/javascript'});

const url = URL.createObjectURL(blob);
return new Worker(url);

[

#PerfMatters
@TRENTMWILLIS

Solution: Create Workers from
Blob URLs of functions

greenlet

github.com/developit/greenlet

Web Worker libraries to use

promise-worker -> turn Worker messages into Promises
greenlet -> turn a Function into a Worker
workerize -> turn a Module into Worker
comlink -> give a Worker a nice main thread interface

importFromWorker -> turn a Module import into a Worker

Lumen

bit.ly/netflix-lumen

#PerfMatters
@TRENTMWILLIS

Lumen

o ' A&l Analytics | lumen-analytics

& C Q. lumen

LUMEN New List Docs Help

Analytics Start

ELASTIC Total Number of Views ELASTIC Total Number of Sessions ELASTIC Total Number of Unique Users

157,835 5,970 1,971

0
12:00 21.Sep 12:00 22. Sep 12:00 23. Sep 12:00 24, Sep 12:00 25. Sep 12:00 26. Sep 12:00 27.Sep

Lumen

“IThe majority of data operations in Lumen are done
INn Web Workers. This allows Lumen to keep the main
thread free for user interactions, such as scrolling and

iInteracting with individual charts, as the dashboard

loads all of its data.”

VaporBoy (WASMBoy)

Runs a WASM-based GameBoy emulator
with Web Workers for smooth Ul
vaporboy.net

We can ‘weave” a
o o web of web workers!

Worker- 1 o-Worker
Communication

// workRer thread
const workerInWorker = new Worker('worker.js');

#PerfMatters
@TRENTMWILLIS

MessageChannel
consists of 2
MessagePorts

#PerfMatters
@TRENTMWILLIS

// main thread
const workerl
const worker2

ew Worker('worker-1.js');
ew Worker('worker-2.js');

|
—

|
—

#PerfMatters
@TRENTMWILLIS

const workerl
const worker?

1
—

ew Worker('worker-1.js');
ew Worker('worker-2.js');

|
—

const channel new MessageChannel();

#PerfMatters
@TRENTMWILLIS

const workerl

new Worker('worker-1.js');

const worker2 = new Worker('worker-2.js');

const channel

workerl.postMessage ('MessagePort',
worker2.postMessage (' 'MessagePort',

new MessageChannel();

‘channel.portl.

‘channel.port2.

#PerfMatters
@TRENTMWILLIS

A Transferable object can be transferread
between execution contexts.

Normal L J
Object
g™ """
Transferable ! S >
Object ! :

Main Thread Web Worker

// worker thread

self.addEventListener('message’', (event) => 3
1f (event.ports.length) 3

§

£);

#PerfMatters
@TRENTMWILLIS

self.addEventlListener('message’', (event) => 3
t.ports.length) 3
O] .onmessage = event => console.log(event.data);

£);

1t (ever

SAVASA

ever

t.ports
t.ports

0
0

.postMessage('hello from worker 2');

#PerfMatters
@TRENTMWILLIS

const data = await Promise.all(][
backendOneWorker.fetch('first'),
backendTwoWorker.fetch('second"')

1),

const result = awalt processingWorker.process(data);
console.log(result);

You can do this en’r‘\reltj
okl the main thread! o

o

Non-Blocking Canvas Graphics

OffscreenCanvas API

Allows a <canvas> to be used in a Web Worker

#PerfMatters
@TRENTMWILLIS

Non-Blocking DOM Operations

worker-dom

github.com/ampproject/worker-dom

#PerfMatters
@TRENTMWILLIS

Conway’s Game of Life

canvas-of-life.glitch.me

#PerfMatters
@TRENTMWILLIS

#PerfMatters
@TRENTMWILLIS

#PerfMatters
@TRENTMWILLIS

You can do a LOT with
Web Workers, but...

VWorkers are difficult to test

How do we test them?

“roblem: Workers are difficult to test

A Tale of Two Strategies

#PerfMatters
@TRENTMWILLIS

VWorkers are difficult to test

Run the testing
framework and worker in the
same thread

Solution #1: Run the testing framework
and worker in the same threaa

<script src="test-framework.js"></script>
<script src="worker.js"></script>
<script src="tests.js"></script>

importScripts('test-framework.js', 'worker.js');

#PerfMatters
@TRENTMWILLIS

Run the testing framework
and worker in the same thread

Thatis how VWorkers are useaq.

VWorkers are difficult to test

Solution #2: Treat your Worker
as a Function

Solution #2: Treat your Worker
as a Function

test('transforms data', async (assert) => 3
const worker = new Worker ('transform.js');
const data = [1, 2, 3];
const result = postMessage(worker, data);
assert.equal(result, I'm transformed!);

£);

#PerfMatters
@TRENTMWILLIS

Solution #2: Treat your Worker
as a Function

How do we
mock/stub calls from a Worker?

Sub-Problem: How do we mock/stub
calls from a Worker?

worker-box

github.com/trentmwillis/worker-box

#PerfMatters
@TRENTMWILLIS

How do we mock/stub
calls from a Worker?

canvas-of-life.glitch.me/tests

Web Workers are
powerful, but

, Instead stana
00 on the shoulders of giants.
L et's get out of our users’
Thank you Way and give them
better experiences!

Resources

Spider icon made by Freepik from www.flaticon.com

Web Workers spec: www.w3.orag/TR/workers/

Promise Worker: github.com/nolanlawson/promise-worker
Comlink: github.com/GoogleChromel abs/comlink
Workerize: github.com/developit/workerize
ImportFromWorker: github.com/GoogleChromel abs/import-from-worker
Greenlet: github.com/developit/greenlet

Lumen: bit.ly/netflix-lumen

Worker DOM: github.com/ampproject/worker-dom

Game of Life Demo: canvas-of-life.glitch.me

Worker Box: github.com/trentmwillis/worker-box

https://www.flaticon.com/authors/freepik
http://www.flaticon.com
https://www.w3.org/TR/workers/
https://github.com/nolanlawson/promise-worker
https://github.com/GoogleChromeLabs/import-from-worker
https://github.com/developit/workerize
https://github.com/GoogleChromeLabs/import-from-worker
https://github.com/developit/greenlet
http://bit.ly/netflix-lumen
https://github.com/ampproject/worker-dom
http://canvas-of-life.glitch.me
https://github.com/trentmwillis/worker-box

