
YOU DON’T NEED A DEPENDENCY
BRIAN MUENZENMEYER

 JSConf, October 2025

👋 ABOUT ME

PRINCIPAL ENGINEER

LEADER,
OPEN SOURCE PROGRAM OFFICE

@BRIANMUENZENMEYER.COM

@BMUENZENMEYER

@ME

AUTHOR, APPROACHABLE OPEN SOURCE

MAINTAINER, NODEJS.ORG

📣
DEPENDENCIES ARE

GREAT!

CLICK ME

🌱 NEW FEATURES
Capability Introduced

testing source code 16.17.0

watching source code 16.19.0

parsing arguments 18.3.0

reading environment 20.6.0

styling output 20.12.0

glob files 22.0.0

run typescript 22.6.0

(ISH)

🌱 NEW FEATURES
Capability Introduced

testing source code 16.17.0

watching source code 16.19.0

parsing arguments 18.3.0

reading environment 20.6.0

styling output 20.12.0

glob files 22.0.0

run typescript 22.6.0

(ISH)

Jul 2025 Oct 2025 Jan 2026 Apr 2026 Jul 2026 Oct 2026 Jan 2027 Apr 2027

Main

Node.js 20

Node.js 22

Node.js 24

Node.js 25

Node.js 26

UNSTABLE

MAINTENANCE

MAINTENANCEACTIVE

MAINTENANCEACTIVECURRENT

CURRENT

ACTIVECURRENT

These releases potentially replace an external

dependency in your project.

Capability Dependency Replaced

testing source code jest, ava, ts-jest

watching source code nodemon

parsing arguments commander, yargs

reading environment dotenv

styling output colors, chalk

glob files glob, globby, fast-glob

run typescript ts-node, tsx

🥼 SAMPLE PROJECT

BEFORE

Core business logic by GitHub + Claude:

{
 "dependencies": {
 "chalk": "5.6.0",
 "commander": "14.0.0",
 "dotenv": "17.2.2",
 "glob": "11.0.3"
 },
 "devDependencies": {
 "@types/jest": "30.0.0",
 "jest": "30.1.3",
 "nodemon": "3.1.10",
 "ts-jest": "29.4.1",
 "typescript": "5.9.2"
 },
 "scripts": {
 "build": "tsc src/parser.ts --outDir src --target ES2022 --

"dev": "nodemon watch src/cli js watch src/parser ts

🧪 TESTING SOURCE CODE
16.17.0 (August 2022)

Tests of all kinds build confidence in release.

🃏
For many projects, I'd turn to jest to test my code.

🃏
For many projects, I'd turn to jest to test my code.

It's been the default for so long, is part of the

OpenJS Foundation, and enjoys a large ecosystem

of tools and attention, making it hard to argue

against.

We can test our SBOMParser class with this test:

import { SBOMParser } from "./parser.js"

describe("SBOMParser", () => {
 test("should throw error for invalid JSON", () => {
 expect(() => {
 SBOMParser.parseSBOM("invalid json")
 }).toThrow("Failed to parse SBOM JSON")
 })
})

And then run it with:

"test": "node --experimental-vm-modules node_modules/jest/bin/j
"test:watch": "pnpm test -- --watch"

And then run it with:

"test": "node --experimental-vm-modules node_modules/jest/bin/j
"test:watch": "pnpm test -- --watch"

Already there's trouble brewing...

Node.js now includes a built-in test runner,

node --test

-"test": "node --experimental-vm-modules node_modules/jest/bin/
-"test": "pnpm test:jest --watch",
+"test": "node --test",
+"test:watch": "node --test --watch",

Here's a test diff:

+import assert from "node:assert"
+import { test, describe } from "node:test"
import { SBOMParser } from "./parser.js"

describe("SBOMParser", () => {
 test("should throw error for invalid JSON", () => {
- expect(() => {
+ assert.throws(() => {
 SBOMParser.parseSBOM("invalid json")
- }).toThrow("Failed to parse SBOM JSON")
+ }, /Failed to parse SBOM JSON/)
 })
})

🏌️
I'm not interested in the code golf here, but it is

worth emphasizing two things:

1. Jest's support for ESM is still evolving (pinned

issue since), not yet with a polished

developer experience.

2020

1. Jest's support for ESM is still evolving (pinned

issue since), not yet with a polished

developer experience.

2020

1. Jest's support for ESM is still evolving (pinned

issue since), not yet with a polished

developer experience.

2020

2. Jest is slower, even with one suite.

Benchmarking via time pnpm test against

both showed the Node.js test runner to be 5

times faster.

👀 WATCHING SOURCE CODE
16.19.0 (December 2022)

Tasks re-run when as your source code changes

during development.

👀 WATCHING SOURCE CODE
16.19.0 (December 2022)

Tasks re-run when as your source code changes

during development.

Stopping and restarting the server each time is a

pain.

Our sample project contains this script in our

package.json:

"dev": "nodemon --watch src src/cli.js"

Our sample project contains this script in our

package.json:

"dev": "nodemon --watch src src/cli.js"

Works great, and has for a long time.

But now, Node.js has built-in arguments

--watch and --watch-path.

We can replace this with:

-"dev": "nodemon --watch src src/cli.js",
+"dev": "node --watch-path=src src/cli.js",

🙈
Not much different at the surface. It works for this

use case.

🙈
Not much different at the surface. It works for this

use case.

Critically, it survives parsing errors in the JavaScript.

💬 PARSING ARGUMENTS
18.13.0 (January 2023)

Our CLI should support configurable, runtime

usecases.

0️⃣
Node.js supports process.argv since 0.1.27

so what's the fuss?

0️⃣
Node.js supports process.argv since 0.1.27

so what's the fuss?

Tools like yargs and commander have been the go-

to for a long time.

Our arguments start parsed with commander:

import { Command } from "commander"
const program = new Command()

program
 .name("sbom-parser")
 .argument(
 "[sbom-file]",
 "Path to the SBOM JSON file (optional if using --glob)"
)
 .option("-f, --format <format>", "Output format: stdout or js
 .action(async (sbomFilePath, options) => {
 ...
 })
await program.parseAsync()

We can do this:

import { parseArgs } from "node:util"

const parsed = parseArgs({
 options: {
 format: {
 type: "string",
 short: "f",
 },
 },
 allowPositionals: true,
})

const { values: options, positionals } = parsed

🎚️
Lops off the two first arguments by default,

synchronous by default, and enough for my needs.

🎚️
Lops off the two first arguments by default,

synchronous by default, and enough for my needs.

Node.js also throws an error for missing or extra

params - which is nice - and again, perhaps

enough.

🌲 READING ENVIRONMENT
20.6.0 (September 2023)

Environment variables provide flexibility and

portability to code.

The obvious choice for years was dotenv:

import dotenv from "dotenv"

dotenv.config()

const format = options.format
 ? options.format
 : process.env.DEFAULT_FORMAT

But Node.js can do this too!

Delete that dotenv import.

-import dotenv from "dotenv"

-dotenv.config()

const format = options.format
 ? options.format
 : process.env.DEFAULT_FORMAT

We add this to our package.json dev script:

-"dev": "node --watch-path src src/server.js",
+"dev": "node --env-file=.env --watch-path src src/server.js",

🗺️
We get multiple file support with overrides and a

familiar enough syntax to dotenv files.

🗺️
We get multiple file support with overrides and a

familiar enough syntax to dotenv files.

Node.js can also error or gracefully handle missing

env files, the choice is yours.

🖌️ STYLING OUTPUT
20.12.0 (March 2024)

Terminal output styling can improve UX.

The ubiquitous module chalk suffices:

import chalk from 'chalk'
...
lines.push(
 `Total packages: ${chalk.green.bold(summary.totalPackages)}`
)

But look at this native Node.js code:

-import chalk from 'chalk'
+import { styleText } from 'node:util'
...
lines.push(
- `Total packages: ${chalk.green.bold(summary.totalPackages)}
+ `Total packages: ${styleText(["green", "bold"], summary.total
);

🎨
Rudimentary support for terminal color detection

and environment variable overrides.

⭐️ GLOB FILES
22.0.0 (April 2024)

Operating on groups of files is a common

capability.

Plenty of ways to do this.

Lots of tools race to be fastest.

import { glob } from "glob"

...

const files = await glob(options.glob)

Another Node.js internal:

- import { glob } from "glob"
+ import { glob } from "node:fs/promises"

...

- const files = await glob(options.glob)
+ const files = await Array.fromAsync(glob(options.glob))

🎮 CHECKPOINT
Nice, we got through quite a bit.

But it's always smart to save before the big boss

fight.

❓
What's left?

❓
What's left?

TypeScript.

🏗️ TYPESCRIPT
22.6.0 (August 2024)

Native TypeScript support was consistent

community ask and wedge issue.

Here's a tiny snippet of our parser class:

static filterByLicense(summary, licenseFilter) {
 return summary.dependencies.filter((dep) =>
 dep.license.toLowerCase().includes(
 licenseFilter.toLowerCase())
);
}

Let's add some types to match the SBOM schema

export interface SBOMDependency {
 name: string
 version: string
 license: string
 packageManager: string
 copyright?: string
 spdxId: string
 downloadLocation: string
}

export interface SBOMSummary {
 totalPackages: number
 dependencies: SBOMDependency[]
 licenses: Record<string, number>
 packageManagers: Record<string, number>
}

static filterByLicense(
 summary: SBOMSummary,
 licenseFilter: string
): SBOMSummary {
 return summary.dependencies.filter((dep) =>
 dep.license.toLowerCase().includes(
 licenseFilter.toLowerCase()
);
}

As of v23.6.0 in January...

THIS JUST RUNS!

We still get feedback in editor.

🤓 REPLY GUY: WELL ACTUALLY...
you didn't build the project at all, it only removed

the typings, flow-style. Sad!

🤓 REPLY GUY: WELL ACTUALLY...
you didn't build the project at all, it only removed

the typings, flow-style. Sad!

But wait, I say, my editor gave me immediate

feedback of the error, without needing a build

process at all.

SOME NOTES
no type-stripping under node_modules

SOME NOTES
no type-stripping under node_modules

(perhaps ever)

SOME NOTES
no type-stripping under node_modules

(perhaps ever)

--experimental-transform-types

SOME NOTES
no type-stripping under node_modules

(perhaps ever)

--experimental-transform-types
--erasableSyntaxOnly for TS@5.8

HOPE OF 2024...

...NOW CONFIRMED

🛑 STOP
Let's not go deeper today.

I'll spare you the ESM + TypeScript + Jest headache.

👉

Okay, well, can we do the same incremental

running of our server.ts file with a dependency? Of

course we can.

In fact, the ts-node and nodemon docs allude to

the fact that this should just work:

"dev:nodemon": "nodemon --watch src src/server.js",

This was after temporarily dropping the watch

glob, as the default is... *.* 🤝. What we uncover,

however, is a problem lurking around the whole

post, ESM.

> nodemon src/server.ts

[nodemon] 3.1.9
[nodemon] to restart at any time, enter `rs`
[nodemon] watching path(s): *.*
[nodemon] watching extensions: ts,json
[nodemon] starting `ts-node src/server.ts`
TypeError: Unknown file extension ".ts" for /workspaces/time-to
 at Object.getFileProtocolModuleFormat [as file:] (node:inte
 at defaultGetFormat (node:internal/modules/esm/get_format:2
 at defaultLoad (node:internal/modules/esm/load:122:22)
 at async ModuleLoader.loadAndTranslate (node:internal/modul
 at async ModuleJob._link (node:internal/modules/esm/module_
 code: 'ERR_UNKNOWN_FILE_EXTENSION'
}
[nodemon] app crashed - waiting for file changes before startin

Ugh. Googling around, this is potentially a "famous"

problem with ESM + TypeScript. I won't even

discuss Jest right now. I did get it working but we

shouldn't mention it.

🙊 I'm staying true to this process, so

no, we aren't talking about Bruno and

Deno. That's not the point, yet. We're

almost there, I promise.

tsx I guess is maybe something? This worked:

"dev:nodemon": "nodemon --exec pnpm tsx src/server.ts"

AFTER
{
 "dependencies": {
 },
 "devDependencies": {
 "@types/node": "^24.5.1",
 "typescript": "^5.9.2"
 },
 "scripts": {
 "dev": "node --env-file=.env --watch-path=src src/cli.js",
 "start": "node --env-file=.env src/cli.js",
 "test": "node --test",
 "test:watch": "node --test --watch"
 }
}

⚖️ COMPARISONS
This ain't your entire app...

⚖️ COMPARISONS
This ain't your entire app...

...and we can all caveat this with enough asterisks

to call in Legal.

BUT NUMBERS ARE NUMBERS
Metric Before After Delta

node_modules 393 4 1%, or 98 times smaller

size node_modules 75 MB 26 MB 35%, or 2.5 times smaller

 ORDERS OF
MAGNITUDE LESS
DEPENDENCIES.

TWO

 ORDERS OF
MAGNITUDE LESS
DEPENDENCIES.

TWO

DEPENDABOT WILL BE
BORED.

LESS IS MORE LESS
And, these direct dependencies, over the past 12

months, have had 35 releases.

COMPARISON COMPLEMENT

☀️ PACE LAYERS

“FAST LEARNS; SLOW REMEMBERS.”
— Stewart Brand

SYM • MATHESY : TOGETHER, LEARN
An entity composed by transcontextual mutual

learning through interaction

— Nora Bateson

🔥
CHURN IS PACE LAYERS IN MOTION.

WE CAN CELEBRATE:

WE CAN CELEBRATE:
innovation can be quick / creators have agency

to explore

WE CAN CELEBRATE:
innovation can be quick / creators have agency

to explore

competition puts pressure on established

systems to improve

WE CAN CELEBRATE:
innovation can be quick / creators have agency

to explore

competition puts pressure on established

systems to improve

maintainers craving momentum and stability

have space and time to cultivate

WE CAN CELEBRATE:
innovation can be quick / creators have agency

to explore

competition puts pressure on established

systems to improve

maintainers craving momentum and stability

have space and time to cultivate

layers exist for anyone to contribute within

their means

FIND YOUR LAYER.
There's room for all of us.

THANKS!
@BRIANMUENZENMEYER.COM

@BMUENZENMEYER

@ME

GRAB A COPY NOW

