nedec

YOU DON'T NEED A DEPENDENCY

BRIAN MUENZENMEYER

oooooooooooooooooo

N ABOUT ME

PRINCIPAL ENGINEER

LEADER,
OPEN SOURCE PROGRAM OFFICE

@BRIANMUENZENMEYER.COM %S¢
@BMUENZENMEYER €
GME

AUTHOR, APPROACHABLE OPEN SOURGE

MAINTAINER, NODEJS.ORG

ne de@ Learn About Download Blog Docs Contribute 2

Run JavaScript
Everywhere

Node.js® is a free, open-source, cross-platform
JavaScript runtime environment that lets
developers create servers, web apps, command
line tools and scripts.

Get Node.js®

Get security support

for EOL Node.js versions

v22.19.0 Latest LTS V24.8.0 Latest Release Trademark Policy ~ Privacy Policy

Certification 7

Q start typing... ¥ K

Create an HTTP Server Write Tests Read and Hash a File Streams Pipeline Work with Threads

1 // server.mjs

2 import { createServer } from 'node:http';

3

4 const server = createServer((req, res) => {

5 res.writeHead (200, { 'Content-Type': 'text/plain' 3);
6 res.end('Hello World!\n');

7 3

8

9 // starts a simple http server locally on port 3000

10 server.listen(3000, '127.0.0.1', () => {

a4l console.log('Listening on 127.0.0.1:3000"');

12 e

alg)

14 // run with “node server.mjs’
JavaScript © Copy to clipboard

Learn more what Node.js is able to offer with our Learning materials.

Code of Conduct Security Policy © Open|S Foundation (w) m

~
DEPENDENCIES ARE
GREAT

The Rule of Least Power

TAG Finding 23 February 2006

This version:
hitp:/iwww.w3.0rg/2001/tag/doc/leastPower-2006-02-23
Latest version:
http://www w3 .org/2001/tag/doc/leastPower
Previous versions:
http:/www w3 .org/2001/tag/doc/leastPower-2006-2-13.html http-/fwww.w3 org/2001/tag/doc/leastPower-2006-01-23 html http-//www.w3 org/2001/tag/doc/leastPower-2005-12-
20.html http://www w3 .org/2001/tag/doc/leastPower-2005-12-19.html
Editors:
Tim Berners-Lee, World Wide Web Consortium <timbl@w3.org=
Noah Mendelsohn, IBM Corporation =noah_mendelsohn@us.ibm.com:=

This document is also available in these non-normative formats: XML

Copyright © 2006 W3ac® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use, and software licensing rules apply.

Abstract

When designing computer systems, one is often faced with a choice between using a more or less powerful language for publishing information, for expressing constraints, or for
solving some problem. This finding explores tradeoffs relating the choice of language to reusability of information. The "Rule of Least Power" suggests choosing the least powerful
language suitable for a given purpose.

Status of this Document

This document has been produced by the W3C Technical Architecture Group (TAG). The TAG approved this finding at its 14 February 2006 teleconference. The text of this finding was
adapted from Principle of Least Power in [Axioms]. Earlier drafts of this finding had the working title: The Principle of Least Power. Additional TAG findings, both accepted and in draft
state, may also be available. The TAG may incorporate this and other findings into future versions of the [AWWW].

Please send comments on this finding to the publicly archived TAG mailing list www-tag@w3.org (archive).

Table of Contents

1 Language Power and Information Reuse

2 Web Technologies and the Rule of Least Power
3 Scalable language families

4 References

1 Language Power and Information Reuse

The World Wide Web is unique in its ability to promote information reuse on a global scale. Information published on the Web can be flexibly combined with other information, read by
a broad range of software tools, and browsed by human users of the Web. For such reuse to succeed, the broadest possible range of tools must be capable of understanding the data
on the Web, and the relationships among that data. Thus, when publishing information or programs on the Web, the choice of language is important. This finding explores the
connection between the choice of computer language and the reusability of information represented in that language.

CLICK ME

~{” NEW(ISH) FEATURES

Capability Introduced

testing source code 16.17.0

watching source code 16.19.0

parsing arguments 18.3.0

reading environment 20.6.0

styling output 20.12.0
glob files 22.0.0

run typescript 22.6.0

~{" NEW(ISH) FEATURES

Capability Introduced

testing source code 16.17.0

watching source code 16.19.0

parsing arguments 18.3.0

reading environment 20.6.0

styling output 20.12.0
glob files 22.0.0

run typescript 22.6.0

Jul 2025 Oct 2025 Jan 2026 Apr 2026 Jul 2026 Oct 2026 Jan 2027 Apr 2027

Main

Node.js 20

Node.js 22

Node.js 24

Node.js 25

Node.js 26

These releases potentially replace an external
dependency in your project.

Capability Dependency Replaced

testing source code jest, ava, ts-jest

watching source code nodemon

parsing arguments commander, yargs

reading environment dotenv

styling output colors, chalk

glob files glob, globby, fast-glob

run typescript ts-node, tsx

M\ SAMPLE PROJECT

® ® ® () Dependencies - nodejs/node X +

« > C 25 https://github.com/nodejs/node/network/dependencies o a % oo e @ O} (X3 =) @ Finish update :

°
= O nodejs / node Q Type (/] to search 38 &~ +~ON B @

<> Code () Issues 17k 19 Pullrequests 620 (» Actions [Projects 3 @© security 2 |~ Insights 3 Settings

Pulse Dependency graph
Contributors

Dependencies Dependents Dependabot &, Export SBOM
Community
Community Standards Q Search all dependencies
Traffic
Commits & 544 Total Ecosystem ~
Code frequency

asyncC 3.2.3 (Transitive cee
Dependency graph) :

npm - tools/clang-format/package-lock.json - Detected automatically on Jan 13, 2025 - MIT
Network

balanced-match 1.0.2 (Transitive £os
Forks

npm - tools/clang-format/package-lock.json - Detected automatically on Jan 13, 2025 - MIT

Actions Usage Metrics

Actions Performance Metrics brace-expansion 1.1.12 (Transitive eee
npm - tools/clang-format/package-lock.json - Detected automatically on Jun 14, 2025 - MIT

People

clang-format 1.8.0 (Direct
https://github.com/nodejs/node/dependency-graph/sbom

e e e S e S IS s T e B Dl e S

$ sbom-parser demos/nodejs_node_ 480562.json
B SBOM Summary

Total packages: 482

B License Distribution:
MIT: 398 (82.6%)
unknown: 26 (5.4%)
ISC: 21 (4.4%)
Apache-2.0: 16 (3.3%)
BSD-2-Clause: 9 (1.9%)
BSD-3-Clause: 3 (0.6%)
Python-2.0: 3 (0.6%)
MS-RL: 2 (0.4%)
CCo0-1.0: 1 (0.2%)
CC-BY-3.0: 1 (0.2%)
CC-BY-4.0: 1 (0.2%)
BSD-2-Clause AND BSD-2-Clause-Views: 1 (0.2%)

BEFORE

"dependencies": {

"chalk": "5.6.0",
“"commander": "14.0.0",
"dotenv": "17.2.2",
"glob": "11.0.3"

}

"devDependencies": {
"@types/jest": "30.0.0",
"jest": "30.1.3",
"nodemon": "3.1.10",
"ts—jest": "29.4.1",
"typescript': "5.9.2"

}

"scripts": {

"build": “tsc src/parser.ts ——outDir src ——target ES2022 —

Inad..1l. Ilia a Al aia s [P B N PR £ - - e Al ~wmm S imantmam A a A

Core business logic by GitHub + Claude:

/ TESTING SOURCE CODE

$16.1/.0 (August2022)

Tests of all kinds build confidence in release.

For many projects, I'd turn to jest to test my code.

For many projects, I'd turn to jest to test my code.

It's been the default for so long, is part of the
Open)S Foundation, and enjoys a large ecosystem
of tools and attention, making it hard to argue
against.

We can test our SBOMParser class with this test:

import { SBOMParser } from "./parser.js"

describe("SBOMParser", () => {
test("should throw error for invalid JSON", () => {
expect(() => {
SBOMParser.parseSBOM("invalid json")
}).toThrow("Failed to parse SBOM JSON")
1)
})

And then run it with:

"test": "node ——experimental-vm-modules node_modules/jest/bin/]
"test:watch": "pnpm test —— ——watch"

And then run it with:

"test": "node ——experimental-vm-modules node_modules/jest/bin/]
"test:watch": "pnpm test —— ——watch"

Already there's trouble brewing...

Node.js now includes a built-in test runner,

node ——test

+"test": "node —-test",
+"test:watch": "node ——test ——watch",

Here's a test diff:

+import assert from "node:assert"
+import { test, describe } from "node:test"
import { SBOMParser } from "./parser.js"

describe("SBOMParser", () => {
test("should throw error for invalid JSON", () => {

+ assert.throws(() => {
SBOMParser.parseSBOM("invalid json")

+ }, /Failed to parse SBOM JSON/)
})

)

y

I'm not interested in the code golf here, but itis
worth emphasizing two things:

1. Jest's support for ESM is still evolving (pinned
issue since 2020), not yet with a polished
developer experience.

1. Jest's support for ESM is still evolving (pinned
issue since 2020), not yet with a polished
developer experience.

1. Jest's support for ESM is still evolving (pinned
issue since 2020), not yet with a polished
developer experience.

2. Jest is slower, even with one suite.
Benchmarking via time pnpm test against
both showed the Node.js test runner to be 5
times faster.

99 WATCHING SOURCE CODE

$16.19. 0 (December 2022)

Tasks re-run when as your source code changes
during development.

99 WATCHING SOURCE CODE

$16.19. 0 (December 2022)

Tasks re-run when as your source code changes
during development.

Stopping and restarting the server each time is a
pain.

Our sample project contains this script in our
package. json:

"dev": "nodemon —-—watch src src/cli.js"

Our sample project contains this script in our
package. json:

"dev": "nodemon —-—watch src src/cli.js"

Works great, and has for a long time.

But now, Node.js has built-in arguments
——watch and ——watch-path.

We can replace this with:

+"deV": "nOde __Watch_path=sr'c SrC/Cli.jSII,

o

Not much different at the surface. It works for this
use case.

o

Not much different at the surface. It works for this
use case.

Critically, it survives parsing errors in the JavaScript.

€ PARSING ARGUMENTS

$18.13. 0 vanuary 2023

Our CLI should support configurable, runtime
usecases.

sbom-parser --format=json demos/nodejs_node_480562.json

Node.js supports process.argv since 0.1.27

so what's the fuss?

Node.js supports process.argv since 0.1.27

so what's the fuss?

Tools like yargs and commander have been the go-
to for a long time.

Our arguments start parsed with commander:

import { Command } from '"commander"
const program = new Command()

program
.name ("sbom-parser")
.argument (
"[sbom-file]",

"Path to the SBOM JSON file (optional if using —--glob)"

)

.option("-f, ——format <format>", "Output format: stdout or js
.action(async (sbomFilePath, options) => {

})...

await program.parseAsync()

We can do this:

import { parseArgs } from "node:util"

const parsed = parseArgs({
options: {

format: {
type: "string",
short: "f",
e
by

allowPositionals: true,

})

const { values: options, positionals } = parsed

Lops off the two first arguments by default,
synchronous by default, and enough for my needs.

Lops off the two first arguments by default,
synchronous by default, and enough for my needs.

Node.js also throws an error for missing or extra
params - which is nice - and again, perhaps
enough.

h*ﬁh._

~ READING ENVIRONMENT

®20.06,.0 (September 2023)

Environment variables provide flexibility and
portability to code.

The obvious choice for years was dotenv:

import dotenv from "dotenv"

dotenv.config()

const format = options.format
? options.format
: process.env.DEFAULT_FORMAT

But Node.js can do this too!

Delete that dotenv import.

const format = options.format
? options.format
: process.env.DEFAULT_FORMAT

We add this to our package. json dev script:

+"dev": "node ——env-file=.env ——watch-path src src/server.js",

We get multiple file support with overrides and a
familiar enough syntax to dotenv files.

We get multiple file support with overrides and a
familiar enough syntax to dotenv files.

Node.js can also error or gracefully handle missing
env files, the choice is yours.

< STYLING OUTPUT

"2@ . 12 . @ (March 2024)

Terminal output styling can improve UX.

The ubiquitous module chalk suffices:

import chalk from 'chalk’

lines.push(
"Total packages: ${chalk.green.bold(summary.totalPackages)}"
)

But look at this native Node.js code:

+import { styleText } from 'node:util'’

lines.push(

+ 'Total packages: ${styleText(["green", "bold"], summary.total
);

R

Rudimentary support for terminal color detection
and environment variable overrides.

Y GLOB FILES

$22.0.0 (April 2024)

Operating on groups of files is a common
capability.

Plenty of ways to do this.

import { glob } from "glob"

const files = await glob(options.glob)

Lots of tools race to be fastest.

Another Node.js internal:

+ import { glob } from "node:fs/promises"

+ const files = await Array.fromAsync(glob(options.glob))

< CHECKPOINT

Nice, we got through quite a bit.

But it's always smart to save before the big boss
fight.

What's left?

What's left?

TypeScript.

T TYPESCRIPT

$22.6.0 (August 2024)

Native TypeScript support was consistent
community ask and wedge issue.

Here's a tiny snippet of our parser class:

static filterByLicense(summary, licenseFilter) {
return summary.dependencies.filter((dep) =>
dep. license.toLowerCase().includes
licenseFilter.tolLowerCase())

);

Let's add some types to match the SBOM schema

export interface SBOMDependency {
name: string
version: string
license: string
packageManager: string
copyright?: string
spdxId: string
downloadLocation: string

}

export interface SBOMSummary {
totalPackages: number
dependencies: SBOMDependency]
licenses: Record<string, number>
packageManagers: Record<string, number>

}

static filterBylLicense(
summary: SBOMSummary,
licenseFilter: string
): SBOMSummary A
return summary.dependencies.filter((dep) =>
dep.license.tolLowerCase().includes
licenseFilter.tolLowerCase()

);

THIS JUST RUNS!

We still get feedback in editor.

static filterByLicense(
summary: SBOMSummary,
licenseFilter: 'GPL' | 'MIT' | @ //zero-clause BSD mistake
) : SBOMSummary {
const filteredDependencies = summary.dependencies.filter((dep) =>
dep.license.toLowerCase().includes(licenseFilter.toLowerCase())
)

REPLY GUY: WELL ACTUALLY...

you didn't build the project at all, it only removed
the typings, flow-style. Sad!

REPLY GUY: WELL ACTUALLY...

you didn't build the project at all, it only removed
the typings, flow-style. Sad!

But wait, | say, my editor gave me immediate
feedback of the error, without needing a build
process at all.

SOME NOTES

* No type-stripping under node_modules

SOME NOTES

* No type-stripping under node_modules
(perhaps ever)

SOME NOTES

* No type-stripping under node_modules
(perhaps ever)
e —experimental-transform—-types

SOME NOTES

* No type-stripping under node_modules
(perhaps ever)

e —experimental-transform-types

e —erasableSyntax0nly for TS@5.8

HOPE OF 2024...

Brian Muenzenmeyer
« &y (@brianmuenzenmeyer.com

@ he/him

It hit me today just how ergonomic @nodejs.org is getting,
especially with 22.

| wrote a @github.com Action in first-party @typescriptlang.org,
via --experimental-strip-types, landed by
@satanacchio.bsky.social.

No build process. It might not seem so, but it's a real unlock.
#nodejs #typescript

November 13, 2024 at 7:48 PM 2% Everybody can reply

6 likes

(2 - Qe a

..NOW CONFIRMED

00 Q bmuenzenmeyer/nodejs-vers X +

<« > C 25 https://github.com/bmuenzenmeyer/nodejs-version-logger-typescript-action L a % oo we @ & (3 @

Finish update 3

°
= O bmuenzenmeyer / nodej: ion-logger-typ: ipt-acti Q Type(/]to search S &~ +- O & @
<> Code (O Issues 17 Pullrequests () Actions ffJ Projects () Security |~ Insights 3 Settings
& nodejs-version-logger-typescript... Pubiic template O Sponsor > ©Watch 0 - Y Fork 0 ¥ star 0 - [Usethis template -
P main ~ ¥ 1Branch © 0Tags Q Gotofile t Addfile ~ | <> Code ~ About &

$ bmuenzenmeyer Add MIT License to the project

4288230 - 11 minutes ago 1) 3 Commits

Demo and template of a TypeScript
GitHub Action with no build process
needed now that GH supports Node 24

8 .github/workflows add demo 10 hours ago

@ approachableopensource.com
[.editorconfig add demo 10 hours ago

typescript actions

[.gitignore add demo 10 hours ago

0 Readme
[LICENSE Add MIT License to the project 11 minutes ago s MIT license
[README.md add demo 17 minutes ago A~ Activity

¢ 0 stars
[actionyml add demo 10 hours ago

® 0 watching
[indexts add demo 10 hours ago % 0 forks
[9 package-lock.json add demo 10 hours ago

Releases
[package.json add demo 10 hours ago

[0 README 3[3 MIT license

4

Node Version Logger TypeScript Action

A simple GitHub Action written in TypeScript that logs the Node.js version the action is running with.

« [Workflow Config targeting Node 24
« @ Action Source Code (TypeScript only!)

o M DRin Nomn

No releases published
Create a new release

Sponsor this project
@ bmuenzenmeyer Brian Muenze... O
& https://approachableopensource.com

Learn more about GitHub Sponsors

Languages

& ST0P

Let's not go deeper today.

I'll spare you the ESM + TypeScript + Jest headache.
‘_

Okay, well, can we do the same incremental
running of our server.ts file with a dependency? Of
course we can.

In fact, the ts-node and nodemon docs allude to
the fact that this should just work:

"dev:nodemon": "nodemon —--watch src src/server.js",

This was after temporarily dropping the watch
glob, as the default is... x.* ¥ What we uncover,
however, is a problem lurking around the whole
post, ESM.

> nodemon src/server.ts

[nodemon] 3.1.9

[nodemon] to restart at any time, enter "rs’

[nodemon] watching path(s): *x.x

[nodemon] watching extensions: ts,json

[nodemon] starting "ts-node src/server.ts’

TypeError: Unknown file extension ".ts" for /workspaces/time-to

at
at
at
at
at

code:

}

[nodemon] app crashed - waiting for file changes before startin

Object.getFileProtocolModuleFormat [as file:] (node:inte
defaultGetFormat (node:internal/modules/esm/get_format:2
defaultLoad (node:internal/modules/esm/load:122:22)
async ModuleLoader.loadAndTranslate (node:internal/modul
async ModuleJob._link (node:internal/modules/esm/module_
"ERR_UNKNOWN_FILE_EXTENSION'

Ugh. Googling around, this is potentially a "famous"
problem with ESM + TypeScript. | won't even
discuss Jest right now. | did get it working but we
shouldn't mention it.

@ I'm staying true to this process, so
no, we aren't talking about Brune and
Deno. That's not the point, yet. We're
almost there, | promise.

tsx | guess is maybe something? This worked:

"dev:nodemon": "nodemon —-—-exec pnpm tsx src/server.ts"

AFTER

"dependencies": {

¥,

"devDependencies": {
"@types/node": "724.5.1",
"typescript': "~5.9.2"

I
"scripts": {
"dev'": "node ——env-file=.env ——watch—-path=src src/cli.js",
"start": "node ——env-file=.env src/cli.js",
"test": "node —-test",
"test:watch": "node —-test —-watch"
I3

@ NODESOU RCE® Products v Services Solutionss» Resources~ Company v/ BOOKA DEMO ‘ ‘ SIGN IN/SIGN UP | | CONTACT US
~

The NodeSource Blog s

ALL POSTS NODE.JS

15 Recent Node.js Features that Replace
Popular npm Packages

by: ﬂ Lizz Parody in Node.js on Oct 01 2025
N|Solid No

Over the years, Node.js developers have relied on countless npm packages to fill gaps in the platform. From HTTP utilities to
file system helpers, the ecosystem has always been one of Node’s greatest strengths. But as Node.js continues to evolve,

many features that once required third-party packages are now built into the runtime itself.

This shift reduces dependency bloat, improves security, and makes applications easier to maintain. if you want a tool to track

FEATURED ARTICLES

Node.js 22 Features You Should Be
Using

In Node.js on Oct 10 2025
Intelligent Observability: How Al is

Transforming Node.js Telemetry into
Actionable Optimization

In NodeSource on Oct 09 2025

Modernizing on Your Own Terms: A
Strategic Guide to Managing Node.js
Legacy Systems

on Sep 102025

CATEGORIES

NodeSource

Node.js

L2 COMPARISONS

This ain't your entire app...

L2 COMPARISONS

This ain't your entire app...

...and we can all caveat this with enough asterisks
to call in Legal.

BUT NUMBERS ARE NUMBERS

Metric Before After Delta

node_modules 393 4 1%, or 98 times smaller

size node_modules 75 MB 26 MB 35%, or 2.5 times smaller

TWO ORDERS OF
MAGNITUDE LESS
DEPENDENCIES.

ORDERS OF
MAGNITUDE LESS
DEPENDENCIES.

DEPENDABOT WILL BE
BORED.

LESS IS MBRE LESS

And, these direct dependencies, over the past 12
months, have had 35 releases.

COMRARISON COMPLENENT
nede

-1

‘®: PACE LAYERS

Pace Layering

Source: Brand, S., 1999, The Clock of the Long Now, p. 37.

“FAST LEARNS; SLOW REMEMBERS.”

— Stewart Brand

SYM * MATHESY: TOGETHER, LEARN

An entity composed by transcontextual mutual
learning through interaction
— Nora Bateson

Open Source Pace Layers, v1.0.0

Source: Brian Muenzenmeyer, 2025, brianmuenzenmeyer.com and approachableopensource.com

¢

CHURN IS PACE LAYERS IN MOTION.

WE CAN CELEBRATE:

WE CAN CELEBRATE:

* innovation can be quick / creators have agency
to explore

WE CAN CELEBRATE:

* innovation can be quick / creators have agency

to explore
e competition puts pressure on established

systems to improve

WE CAN CELEBRATE:

e innovation can be quick / creators have agency
to explore

e competition puts pressure on established
systems to improve

e maintainers craving momentum and stability
have space and time to cultivate

WE CAN CELEBRATE:

e innovation can be quick / creators have agency
to explore

e competition puts pressure on established
systems to improve

e maintainers craving momentum and stability
have space and time to cultivate

e |ayers exist for anyone to contribute within
their means

FIND YOUR LAYER.

oooooooooooooooooooooo

' @BRIANMUENZENMEYER COM %
TH A N KS o @BMUENZENMEYER ©)

U Min

GRAB A COPY NOW

