
@brucel

AOM-nom-nom!

@brucel

@brucel

Wix

• enable navigation by keyboard
• provide Screen Reader compatibility
• build infrastructure for accessibility development

and testing.

@brucel

@brucel

@brucel

“Perfect
is the
enemy of
Good”

@brucel

“Perfect
is the
enemy of
Good”

@brucel

 110
million

@brucel

Stylable is a CSS preprocessor for styling components
with typed CSS.

@brucel

 Photo: F. Antolín Hernandez

@brucel

@brucel

@brucel

@brucel

“HTML 4.0 developments inspired by concerns for
accessibility include the requirement that alternate text
accompany an image included via the IMG element.

https://www.w3.org/TR/REC-html40-971218/struct/objects.html#edef-IMG

@brucel

@brucel

HTML Design Principles

Design features to be accessible to users with disabilities.
Access by everyone regardless of ability is essential.
This does not mean that features should be omitted entirely
if not all users can make full use of them, but alternate
mechanisms should be provided.

HTML Design Principles - https://www.w3.org/TR/html-design-principles/

@brucel

@brucel

Ajax / “Web 2.0”

By decoupling the data interchange layer from the
presentation layer, Ajax allows for Web pages, and by
extension Web applications, to change content
dynamically without the need to reload the entire page.

@brucel

WAI ARIA

WAI-ARIA provides a framework for adding attributes to
identify features for user interaction, how they relate to each
other, and their current state.

WAI-ARIA describes new navigation techniques to mark regions
and common Web structures as menus, primary content,
secondary content, banner information, and other types of
Web structures.

@brucel

ARIA landmark roles

role="contentinfo", "main", "banner" ...

Built-in beats bolt-on

@brucel

@brucel

@brucel

Photo: Brittany Shaw

@brucel

@brucel

ARIA isn’t a magic bullet

You still need to

• maintain state and value

• make sure things are keyboard-focusable

• listen for keypresses

• deal with live regions

@brucel

 Web Components

@brucel

@brucel

Web Components WTF?

Web components are a set of web platform APIs that
allow you to create new custom, reusable,
encapsulated HTML tags to use in web pages and
web apps.

https://www.webcomponents.org/introduction

@brucel

JavaScript frameworks

@brucel

Custom elements

<lovely-button>Click me!</lovely-button>

@brucel

.. or semantically neutral

<div>Click me!</div>

@brucel

dannynorton - https://www.flickr.com/photos/dannynorton/186795352/

https://www.flickr.com/photos/dannynorton/

@brucel

accessibility

object

model
F Delventhal https://www.flickr.com/photos/krossbow/10324856173/

@brucel

wicg.github.io/aom/spec/

• Alexander Surkov, Mozilla
• Alice Boxhall, Google
• Dominic Mazzoni, Google
• James Craig, Apple

--enable-blink-features=AccessibilityObjectModel

@brucel

Current gaps

• Leaky abstractions

• IDrefs

• No way to capture input events from

Assistive Technology

• Every accessible node requires a

DOM element.

• No introspection

@brucel

@brucel

Eric Hunt https://en.wikipedia.org/wiki/Brussels_sprout#/media/
File:Brussels_sprout_closeup.jpg

@brucel

Sprouting ARIA attributes

<custom-slider min="0" max="5" value="3"></custom-slider>

<!-- Custom element is forced to "sprout" extra attributes
 to express semantics -->

<custom-slider min="0" max="5" value="3" role="slider"
tabindex="0" aria-valuemin="0" aria-valuemax="5" aria-
valuenow="3"
aria-valuetext="3"></custom-slider>

@brucel

Phase 1 of AOM

<div role="checkbox" aria-checked=“true">
Receive promotional offers</div>

can be replaced by:

el.accessibleNode.role = "checkbox";
el.accessibleNode.checked = true;

@brucel

Cleaner code

<custom-checkbox	checked>	
Receive	promotional	offers	
</custom-checkbox>	

@brucel

AOM vs ARIA

• While AOM and ARIA both affect the computed
accessible properties of a node, and have the same
vocabulary, they are separate interfaces.

• They don’t reflect each other.

• If an AOM Accessible Property and the corresponding
ARIA attribute have different values, the AOM property
takes precedence.

IDrefs

@brucel

IDs in HTML associate
<div id="firstname">First name:</div>
<input aria-labelledby="firstname">

aria-activedescendant indicates a descendant
that's focused in a composite control like a list box.

<div role="listbox" aria-activedescendant="item1"
tabindex="0">
 <div role="option" id="item1">Item 1</div>
 <div role="option" id="item2">Item 2</div>
 <div role="option" id="item3">Item 3</div>
</div>

@brucel

Impossible across
components

<custom-listbox>
 <custom-option id="item1">Item 1</custom-option>
 <custom-option id="item2">Item 2</custom-option>
 <custom-option id="item3">Item 3</custom-option>
</custom-listbox>

@brucel

New! Improved! AOM!

const	input	=	comboBox.shadowRoot.querySelector(“input");	

const	optionList	=	comboBox.querySelector("custom-optionlist");	

input.accessibleNode.activeDescendant	=	
optionList.accessibleNode;

AT input events

@brucel

@brucel

Accessible Actions

• Accessible Actions gives web developers a mechanism to
listen for accessible actions directly, by adding event
listeners on an AccessibleNode.

• This is analogous to listening for user interaction events
on a DOM node, except that the interaction event arrives
via an assistive technology API, so it is directed to the
accessible node first.

AOM phases

@brucel

Phase 1

Modifying Accessible Properties, will
allow setting accessible properties for a DOM element,
including accessible relationships.

@brucel

Phase 2

Accessible Actions, will allow reacting to user actions
from assistive technology.

@brucel

Phase 3

	

Virtual Accessibility Nodes, will allow the creation of

accessibility nodes which are not associated with DOM
elements.

@brucel

Phase 4

Computed Accessibility Tree, will allow reading the
computed accessible properties for accessibility nodes,
whether associated with DOM elements or virtual, and
walking the computed accessibility tree.

@brucel

Why is Phase 4 last?

“the accessibility tree is not standardized between
browsers: Each implements accessibility tree
computation slightly differently. In order for this API to be
useful, it needs to work consistently across browsers

We want to take the appropriate time to ensure we can
agree on the details for how the tree should be computed
and represented”.

@brucel

Users users users!

“Compared to the previous three
phases, accessing the computed
accessibility tree will have the least
direct impact on users”

@brucel

Priority of Constituencies

In case of conflict, consider users over
authors over implementors over
specifiers over theoretical purity.

HTML Design Principles - https://www.w3.org/TR/html-design-principles/

Crowd image!!

@brucel

Priority of Constituencies

Thank you
 thank you
thank you

to
Alice Boxhall
(@sundress)

Thank YOU!
xxx

@brucel

