
Fast Fashion…
How Missguided revolutionised their
approach to site performance
Mark Leach, Missguided
Andy Davies, Eggplant

DeltaV Conf, May 2018

Mark Leach
Missguided

@AndyDavies
Eggplant

**** ****

In the beginning…

C
on

ve
rs

io
ns

What if we improved our sites speed

April 2017
Android MedianiOS Median

Base of good practices already in place

Using HTTP/2 and CDN

Compression enabled for text resources (& minification)

Images optimised using a specialised service

Responsive images

Bundling assets

The early fixes

<link rel="preload" href="https://static.missguided.co.uk/skin/
frontend/mgresponsive/default/fonts/missguided/missguided-bold.woff2"
as="font" type="font/woff2" crossorigin>

<link rel="preload" href="https://static.missguided.co.uk/skin/
frontend/mgresponsive/default/fonts/missguided/missguided-
light.woff2" as="font" type="font/woff2" crossorigin>

Pre-loading fonts speeds up rendering

Browser
downloads fonts

before render tree is built
=

 faster rendering

Homepage images
received but page hasn’t

started rendering yet

What’s delaying rendering?

Optimizely was very chatty

June 2017
Android MedianiOS Median

Summer 2017

Proving the value of performance

⭐ ⭐ ⭐ ⭐ ⭐

Customers love reviews

But some review services can have
a large impact on performance

M
ed

ia
n

Pa
ge

 L
oa

d
Ti

m
e

(s
)

0

2

4

6

8

10

12

14

Week 0

Week 1

Week 2

Week 3

Week 5

Week 5

Android
iOS

So what happens when you remove it?

M
ed

ia
n

Pa
ge

 L
oa

d
Ti

m
e

(s
)

0

2

4

6

8

10

12

14

Week 0

Week 1

Week 2

Week 3

Week 5

Week 5

Android
iOSRemoved for Android

visitors only

So what happens when you remove it?

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Effect on Android revenue

0%

25%

50%

75%

100%

125%

150%

175%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week 0
Week 9

Page Load Time (avg across session)

Cu
m

ul
at

ive
 R

ev
en

ue
 v

s
W

ee
k

0
Android revenue increased week-on-week

+ 56%

Nothing
stays still in

retail!

-4s

£
+26%

(Baselined against other platforms

August 2017
Android MedianiOS Median

https://www.flickr.com/photos/rs_butner/7505567608

Winter 2017

“Can we make it to three seconds?”

Assembled a performance team

https://www.flickr.com/photos/soldiersmediacenter/7112630285

Working? Useful? Usable?

Focused on reducing time to useful and usable

Especially rendering
delays

https://www.flickr.com/photos/poetatum/3457696479

No magic go faster button

https://www.flickr.com/photos/colleenmorgan/2721589361

“Frontend Performance Archaeology”
Katie Sylor-Miller

Visualising JavaScript and CSS bundles can be a
great conversation starter

Visualising JavaScript and CSS bundles can be a
great conversation starter

“How much of
this is used?”

Visualising JavaScript and CSS bundles can be a
great conversation starter

“How much of
this is used?”

“Suspect we can
remove this”

Visualising JavaScript and CSS bundles can be a
great conversation starter

Shrunk download size of core
script bundle by 42%

(uncompressed size by 55%)

Performance Improvements were mostly dull,
boring stuff

Removing unused / un-needed code

Removing duplicate styles

Replacing social media libraries with ordinary links

Moving 3rd party libraries onto Missguided domain

Adding Resource Hints - preconnect, dns-prefetch

Defering loading until later where possible

Cleaned up Optimizely

Switched to Optimizely to use jQuery on the page
rather than bundled version

Removed A/A tests (were being used as Hotfixes)

Stripped out duplicate plugins, experiments for other
environments, and expired ones

https://www.flickr.com/photos/derekbruff/9759290413

There were a few bumps along the way

<picture>
 <source type="image/webp" srcset="foo.webp">
 <source type="image/jp2" srcset="foo.jp2">

</picture>

picture element enables format selection

<picture>
 <source type="image/webp" srcset="foo.webp">
 <source type="image/jp2" srcset="foo.jp2">

</picture>

picture element enables format selection

Browsers that
support webp

<picture>
 <source type="image/webp" srcset="foo.webp">
 <source type="image/jp2" srcset="foo.jp2">

</picture>

picture element enables format selection

Browsers that
support

jpeg2000

<picture>
 <source type="image/webp" srcset="foo.webp">
 <source type="image/jp2" srcset="foo.jp2">

</picture>

picture element enables format selection

Everything else

https://bugs.webkit.org/show_bug.cgi?id=179231

It’s a Safari pre-loader bug!
The `type` attribute in <source> tags are ignored by the preloader. A common pattern is to use the
<source> tag for content negotiation selection to specify webp for chrome and jp2 for safari. For
example:

<picture>
 <source type="image/webp" srcset="foo.webp">
 <source type="image/jp2" srcset="foo.jp2">

</picture>

However, the HTMLPreloadScanner only considers the media query when selecting (or not) the
appropriate <source> element. As a result the preloader greedily selects the foo.webp and then later
requests the correct foo.jpg. It should also evaluate the `type` attribute.

Optimizely snippet got larger (temporarily)

While switching out Optimizely’s jQuery some

extensions needed to be duplicated

This made the bundle larger and slower until the

migration was completed

So where are we now?

April 2017
Android MedianiOS Median

June 2017
Android MedianiOS Median

August 2017
Android MedianiOS Median

April 2018 – HUGE improvement over 12 months

April 2018 – HUGE improvement over 12 months
Android MedianiOS Median

What did we learn?

Linking revenue increases to performance
improvements is still hard…

Many other factors to account for including:

Pricing

Promotions

New brands

Trends

Seasonality

etc.

Optimizely needs careful management

Easy to blow-up the script size

Optimizely are working on features to help

They also capture performance data and will share

Perseverance Pays

Where next?

Add performance monitoring to build process

Further Optimizely improvements

Move experiments into React front-end and use

Optimizely for feature flags

Did we make it to 3 seconds?

Over May bank holiday weekend
median was just above 3.5s

Thank You!
https://www.slideshare.net/andydavies

